企划管理部 IoT应用推进部 社会基础设施解决方案本部 金融及企业解决方案本部 网络系统本部 防卫系统本部 IoT平台本部 系统中心 基础技术中心 信息通信本庄工厂 信息通信沼津工厂
3月23日,由Qiyuan Green Power,Shanghai Boonray Intellighent Technology Co.,Ltd。,Top Gear等共同开发的无人电池交换矿业卡车,并配备了由上海Boonray Intellray Intellighent Technology Co.,Ltd.,Ltd.,Ltd。目前,它已在South Cement的矿山中进行了方案终端申请测试。根据现场测试,“电牛”可以将二氧化碳的排放量减少至少260吨,从而节省至少20万卢比的劳动力成本。
几代人满足自己的需求(https://www.un.org/sustainabledevelvement/development-agenda)。第四代国际论坛于2009年提出的以下围绕可持续性:核能系统将提供可持续的能源产生,以符合清洁的空气目标,并为全球能源生产提供系统的长期可用性和有效的燃料利用。They will minimise and manage their nuclear waste and notably reduce the long-term management burden, thereby improving protection for the public health and the environment (https://www.gen-4.org/gif/jcms/c_9502/generation-iv-goals) 8 In September 2018, the US Department of Energy (DOE) and the Department for Business, Energy, and Industrial Strategy (BEIS) signed the Civil Nuclear Energy Research
4 Rafael Loss 和 Joseph Johnson,“人工智能会危及核威慑吗?”War on the Rocks,2019 年 9 月 19 日,https://warontherocks.com/2019/09/will-artificial-intelligence-imperil-nuclear-deterrence/。5 Michael C. Horowitz、Paul Scharre 和 Alexander Velez-Green,“稳定的核未来?自主系统和人工智能的影响,”ArXiv.org,2019 年 12 月,第 2 页,https://arxiv.org/ftp/arxiv /papers/1912/1912.05291.pdf 6 Edward Geist 和 Andrew J. Lohn,“人工智能如何影响核战争风险?“兰德公司,2018 年,https://www.rand.org/content/dam/rand/pubs/perspectives/PE200/PE296/RAND _PE296.pdf。7 斯德哥尔摩国际和平研究所 (SIPRI),“人工智能对战略稳定和核风险的影响,第一卷:欧洲-大西洋视角”,编辑。Vincent Boulanin,2019 年 5 月,https:// www.sipri.org/sites/default/files/2019-05/sipri1905-ai-strategic-stability-nuclear-risk.pdf。
在制药科学中,识别药物和靶标蛋白之间的潜在相互作用至关重要。在基因组药物发现中,相互作用的实验验证费力且昂贵;因此,需要高效、准确的计算机模拟技术来预测潜在的药物-靶标相互作用,以缩小实验验证的搜索空间。在这项工作中,我们提出了一个新框架,即多图正则化核范数最小化,它从三个输入预测药物和靶标蛋白之间的相互作用:已知的药物-靶标相互作用网络、药物之间的相似性以及靶标之间的相似性。所提出的方法侧重于寻找一个低秩相互作用矩阵,该矩阵由图编码的药物和靶标的接近度构成。先前关于药物靶标相互作用 (DTI) 预测的研究表明,结合药物和靶标的相似性有助于通过保留原始数据的局部几何形状更好地学习数据流形。但是,对于哪种相似性以及哪种组合最能帮助完成预测任务,目前还没有明确的共识。因此,我们建议使用各种药物间相似性和靶标间相似性作为多图拉普拉斯(药物/靶标)正则化项,以详尽地捕获近似值。使用标准评估指标(AUPR 和 AUC)对四个基准数据集进行的大量交叉验证实验表明,所提出的算法提高了预测性能,并且大大优于最近最先进的计算方法。软件可在 https://github.com/aanchalMongia/ MGRNNMforDTI 上公开获取。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年9月23日。 https://doi.org/10.1101/2024.09.22.614332 doi:Biorxiv Preprint
a 海南医学院基础医学与生命科学学院海南省干细胞研究院、海南省热带转化医学教育部重点实验室、海南省热带环境脑科学研究与转化重点实验室,海口 571199 b 香港理工大学工程学院生物医学工程系,香港,中国 c 海南医学院第二附属医院整形外科,海口 570100,中国 d 中科综合医疗转化中心研究院(海南)有限公司,海口 571199,中国 e 淄博市中医院药理科,淄博 255300,中国 f 济宁医学院临床医学院,济宁 272002,中国 g 海南省生物智能材料与生物医疗器械工程研究中心、海南省功能材料与分子影像重点实验室、海南省医学科学院急救与创伤学院海南医学院,海口 571199 h 海南医学院急救与创伤教育部重点实验室,海口市创伤重点实验室,海南省创伤与灾难救援重点实验室,海南医学院第一附属医院,海口 571199 i 海南医学院第二临床学院,海口 571199
该体系结构还指定了几个参考点。RP-AN-1,RP-AN-2,RP-AN-3和RP-AN-6是KB子系统和底层网络之间的参考点,动态适应子系统,自治引擎,E2E网络编排和编排器,以启用这些子系统的KB访问KB。RP-AN-4是自主引擎和动态适应子系统之间的,可为动态适应子系统提供进化探索和实验功能。RP-AN-5位于动态适应子系统和底层网络之间,随着底层网络条件在运行时的变化,将控制器的选择和集成到底层网络。RP-AN-7,RP-AN-8和RP-AN-11是AN编排者和KB之间的参考点,分别是自主引擎和动态适应子系统,以使An Orking Trator能够管理AN和AN和LISECYCLE中的工作流程和流程。RP-AN-9,RP-AN-10,RP-AN-12是E2E网络乐团和编排者,自治引擎和动态适应子系统之间的参考点,由E2E网络编排器使用,这些系统用于管理和机弦乐网络实体。RP-AN-13是E2E网络编排和底层网络之间的参考点,用于管理和编排底层网络中的控制网络实体。