简介:核热推进 (NTP),尤其是固体核推进,被认为是太空推进技术进步的一个相当显著的例子。与普通化学火箭不同,NTP 系统使用核裂变来加热氢气或其他推进剂,从而实现比化学火箭更好的效率和比冲,使 NTP 系统适合长时间的太空任务。本文详细介绍了固体核 NTP 系统,包括其工程设计,例如核反应堆堆芯、推进剂流动和推进剂排气喷嘴。它解决了 NTP 系统设计中的重要工程问题,例如能够在反应堆内运行的高温材料、辐射屏蔽、氢存储,以及可用于解决每个问题的一些方法。它还包括 NTP 系统的缺点和反驳,例如运输时间和有效载荷容量,特别是在火星、深空和外层空间沉积大质量物体的任务中。最后,本文探讨了现有的努力和进一步研究的目标,重点关注材料、混合推进系统的发展以及与其他国家合作的能力,以加快 NTP 推进进展的速度,并最终将其用于未来的太空探索。
摘要:核热推进 (NTP),尤其是固体核推进,被认为是太空推进技术进步的一个相当显著的例子。与普通化学火箭不同,NTP 系统使用核裂变来加热氢气或其他推进剂,从而实现比化学火箭更好的效率和比冲,使 NTP 系统适合长时间的太空任务。本文详细介绍了固体核 NTP 系统,包括其工程设计,例如核反应堆堆芯、推进剂流动和推进剂排气喷嘴。它解决了 NTP 系统设计中的重要工程问题,例如能够在反应堆内运行的高温材料、辐射屏蔽、氢存储,以及可用于解决每个问题的一些方法。它还包括 NTP 系统的缺点和反驳,例如运输时间和有效载荷容量,特别是在火星、深空和外层空间沉积大质量物体的任务中。最后,本文探讨了现有的努力和进一步研究的目标,重点关注材料、混合推进系统的发展以及与其他国家合作的能力,以加快 NTP 推进进展的速度,并最终将其用于未来的太空探索。
免责声明 本信息由美国政府机构赞助,作为工作记录而编写。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
• 技术出版物。已完成的研究或重要研究阶段的报告,介绍 NASA 项目的成果,包括大量数据或理论分析。包括被认为具有持续参考价值的重要科学和技术数据和信息的汇编。NASA 同行评审的正式专业论文的对应文件,但对手稿长度和图形演示范围的限制不那么严格。• 技术备忘录。初步或具有专门意义的科学和技术发现,例如快速发布报告、工作文件和包含最少注释的参考书目。不包含广泛的分析。• 承包商报告。NASA 赞助的承包商和受资助者的科学和技术发现。
CNTR 本质上是一种高性能核热推进 (NTP) 系统,其推进剂直接由反应堆燃料加热。CNTR 与传统 NTP 系统的主要区别在于,CNTR 不使用传统的固体燃料元件,而是使用液体燃料,液体通过离心力包含在旋转圆柱体中。CNTR 的性能目标是在使用氢推进剂时以 1800 s 的比冲提供高推力,在使用氨、甲烷或肼等被动可储存推进剂时以 900 s 的比冲提供高推力。如果实现,这样的性能将使人类 420 天的火星往返任务和其他先进的太空任务成为可能。高效使用任何挥发性物质作为推进剂的能力还可以极大地促进小行星和柯伊伯带天体等太空资源的开发。
摘要 核热推进 (NTP) 使全新类型的深空科学任务能够产生科学回报,而在大多数情况下,传统架构根本无法实现这些回报。NTP 系统可以大大缩短行星际旅行时间,提供大约 2-3 倍(或更多)传统化学推进系统所能提供的质量,或提供这些优势的组合以进一步提高科学回报。目前 NASA 和 DoD 赞助的 NTP 系统计划将使用原型和飞行演示发动机来验证设计,从而使该技术成熟。这些原型发动机将在正确的推力范围内发挥性能,从而允许用作低风险推进级,支持高回报的深空科学任务。此外,与高浓缩铀 (HEU) 燃料相比,使用低浓缩铀 (LEU) 燃料可降低发动机开发、鉴定、验收和发射的成本,并降低与扩散管理相关的风险。