NBD探针对环境敏感,对胺和硫醇高度反应。 这种环境敏感性提供了关键优势,可促进生物分子相互作用和缓冲系统内的自组装。 硝基群的强大电子撤回性质导致NBD衍生能够进行芳族替代(如果存在合适的离开组),从而帮助研究人员开发了各种不同的感应基序来为生物核粒子。 这些关键的化学特性导致荧光团易于化学修饰,并且可以连接到多种蛋白质以及其他生物分子上。 由于可以将NBD固定在生物分子上,因此它使NBD化合物在脂质膜研究,溶酶体脂质体分析和药物筛查中具有宝贵的资产。NBD探针对环境敏感,对胺和硫醇高度反应。这种环境敏感性提供了关键优势,可促进生物分子相互作用和缓冲系统内的自组装。硝基群的强大电子撤回性质导致NBD衍生能够进行芳族替代(如果存在合适的离开组),从而帮助研究人员开发了各种不同的感应基序来为生物核粒子。这些关键的化学特性导致荧光团易于化学修饰,并且可以连接到多种蛋白质以及其他生物分子上。由于可以将NBD固定在生物分子上,因此它使NBD化合物在脂质膜研究,溶酶体脂质体分析和药物筛查中具有宝贵的资产。
气溶胶 悬浮在空气中的固体或液体颗粒,其典型粒径范围为几纳米至几十微米,在对流层中的大气寿命可达数天,在平流层中的大气寿命可达数年。气溶胶一词包括颗粒和悬浮气体,在本报告中通常以复数形式使用,表示“气溶胶颗粒”。对流层的气溶胶可能来自自然或人为;平流层气溶胶主要来自火山喷发。气溶胶可通过散射和吸收辐射(气溶胶-辐射相互作用)直接引起有效的辐射强迫,并通过充当影响云特性的云凝结核或冰核粒子(气溶胶-云相互作用)以及沉积在雪或冰覆盖的表面而间接引起有效的辐射强迫。大气气溶胶可能以初级颗粒物的形式排放,也可能由大气中的气态前体(二次生成)形成。气溶胶可能由海盐、有机碳、黑碳 (BC)、矿物质(主要是沙漠尘埃)、硫酸盐、硝酸盐和铵或它们的混合物组成。另请参阅短期气候强迫因素 (SLCF)。
自20世纪60年代初半导体探测器问世以来,半导体一直被用于测量空间带电粒子。经过几十年的不懈努力,半导体探测技术得到了很大的发展[1]。硅正-本征-负(PIN)探测器因反向漏电流小、环境适应性强、稳定性高而成为辐射探测研究的热点[2-4]。PIN探测器是一种包括一层P型半导体、一层N型半导体以及二者之间的本征半导体(I层)的结构。I层的存在可以形成较大的耗尽区,增加粒子注入的概率,从而提高探测器的能量分辨率。由于PIN辐射探测器势垒层较厚、阻抗系数较大,因此可以获得较低的暗电流、较高的响应度,易于与焦平面阵列电路匹配。此外,该器件结构可以通过调节本征层厚度来提高量子效率[5,6]和响应速度。卫星用∆EE望远镜一般采用印刷电路板(PCB)和两个独立的薄、厚Si-Pin探测器封装而成[7]。∆EE望远镜广泛应用于重离子探测与跟踪、高γ短程粒子探测、X射线探测等。核粒子进入∆EE望远镜后,首先与薄探测器相互作用而损失能量(∆E),然后与厚探测器相互作用而损失剩余能量(E-∆E)。由于∆E与粒子质量成正比,与E成反比,由此可知粒子的性质。为使∆EE探测器中进入的高能粒子能量损失最小,对薄探测器的厚度有一定的要求(小于或等于100μm),但由于Si材料的材料特性,考虑到厚度较小的探测器易受到机械冲击,探测器装置更容易损坏。而且,两个独立的探测器也不符合小型化、高精度化的发展趋势。
在过去的几十年里,加速器被开发和优化为探索亚核粒子研究能量前沿的工具。然而,最近,加速器优化的另一个方面变得更加重要,即高度可靠的操作,以产生大量的粒子碰撞(“粒子工厂”)或光子(光源),为庞大而多样化的用户群体服务。可靠性方面对于光源尤其重要。光源拥有由数千名用户组成的庞大用户群体,这些用户组织成小型独立研究团队,每个研究团队仅使用一小部分光束时间。即使由于频繁的故障和中断导致的轻微运营效率低下也可能导致某些研究团队分配的光束时间完全损失,从而严重扰乱他们的科学计划。出于这些原因,人们越来越重视高度可靠的操作。可靠性通常定义为在预定时间段内提供给用户的光束时间的相对总量。95% 的可靠性被认为是现代光源的可容忍下限。经常报告 98% 左右的可靠性值,这并不是不寻常的成就。这意味着,对于计划的每年 5000 小时的光束时间,由于故障,用户操作可能只会损失 250 小时或更少。假设平均完全从故障中恢复需要两个小时,中断之间的时间必须平均大于 40 小时(假设每天 24 小时和每周 7 天运行)。同步辐射科学已经变得非常复杂,光束的传输不再是可靠性的充分标准。用户需要具有计划的光束能量和几乎恒定的强度、高空间稳定性和所有光束参数在操作模式改变后具有高再现性的光束,例如通过改变波荡器磁铁的场强来改变光子能量。加速器由大量有源组件组成,其中许多组件具有高功耗,必须同时运行才能使光束运行。它们通过复杂的数字控制连接和协调,精确计时通常是正常运行的条件。对于拥有 100,000 个此类组件的设施,任何组件可能仅在运行 4 × 10 6 小时后才会失效。
在过去的几十年里,加速器被开发和优化为探索亚核粒子研究能量前沿的工具。然而,最近,加速器优化的另一个方面变得更加重要,即高度可靠的操作,以产生大量的粒子碰撞(“粒子工厂”)或光子(光源),为庞大而多样化的用户群体服务。可靠性方面对于光源尤其重要。光源拥有由数千名用户组成的庞大用户群体,这些用户组织成小型独立研究团队,每个研究团队仅使用一小部分光束时间。即使由于频繁的故障和中断导致的轻微运营效率低下也可能导致某些研究团队分配的光束时间完全损失,从而严重扰乱他们的科学计划。出于这些原因,人们越来越重视高度可靠的操作。可靠性通常定义为在预定时间段内提供给用户的光束时间的相对总量。95% 的可靠性被认为是现代光源的可容忍下限。经常报告 98% 左右的可靠性值,这并不是不寻常的成就。这意味着,对于计划的每年 5000 小时的光束时间,由于故障,用户操作可能只会损失 250 小时或更少。假设从故障中完全恢复平均需要两个小时,中断之间的时间必须平均大于 40 小时(假设每天 24 小时和每周 7 天运行)。同步辐射科学已经变得非常复杂,光束的传输不再是可靠性的充分标准。用户需要具有计划的光束能量和几乎恒定的强度、高空间稳定性和所有光束参数在操作模式改变后具有高再现性的光束,例如通过改变波荡器磁铁的场强来改变光子能量。加速器由大量有源组件组成,其中许多组件具有高功耗,必须同时运行才能使光束运行。它们通过复杂的数字控制连接和协调,精确计时通常是正常运行的条件。对于拥有 100,000 个此类组件的设施,任何组件可能仅在运行 4 × 10 6 小时后才会失效。