山谷县简史 圆谷、长谷、高谷、斯科特谷等地都属于名副其实的山谷县,该县成立于 1917 年。山谷县北起爱达荷县,南至博伊西县,其多样的地貌自古以来就吸引着矿工、农民、伐木工和休闲者。该地区的早期居民是北肖肖尼 (Sheepeater) 印第安人。这个游牧部落在萨蒙河流域的峡谷中过冬,特别是沿着中叉和南叉,然后在夏天前往长谷。他们在这里打猎、捕鱼和采集根茎。每年夏天结束时,他们会在佩耶特湖南岸相聚,与内兹珀斯人和韦泽人部落成员一起庆祝季末。山谷县各地都可以找到印第安人活动的遗物。虽然毛皮猎人在 1815 年至 1840 年间经过该地区,但爱达荷淘金热才将第一批白人移民带到该地区。1862 年佛罗伦萨和沃伦发生重大淘金事件后,矿工们沿着佩耶特河从塞西什峰穿过朗德山谷向南行进。他们没有取得什么成功,该县早期的采矿企业大多都昙花一现。雷山是个例外,它在 20 世纪初吸引了数千名矿工和投资者来到该县东部偏远地区。据估计,有 3000 人在罗及其周边地区工作
Biodata名称:教授。Piyush Pandey指定:教授系:微生物学系:阿萨姆大学,阿萨姆邦Silchar,阿萨姆邦地址:阿萨姆邦大学微生物学系,阿萨姆邦,阿萨姆邦 - 印度788011,印度电子邮件:piyushddn@gmail@gmail.com简介Piyush Pandey教授Piyush Pandey教授Piyush Pandey在Assam India of Assam India of Assam India,India。他拥有二十三年的学术和研究经验。他的研究小组研究了与植物相关的细菌,以及它们在农业和环境中的潜在应用。他在高影响力,三本书的期刊上发表了150多篇论文,并获得了16篇研究补助金。他因从事植物 - 裂层介导的多芳族碳氢化合物的生物修复而获得“ DBT-CENTRE卓越奖”。此外,他还是加拿大约克大学的SICI-SMP研究员的“海外同学”,并访问了日本的Shizuoka University。Pandey教授是国际环境植物学家学会的会员,是几个科学社会的成员,并在知名的期刊中扮演着社会作用。他一直在广泛研究土壤和植物微生物,环境污染物的根茎修复和环境基因组学。他的研究贡献已获得Springer,环境可持续性协会和亚洲PGPR学会的授予。 他有两项印度专利。 研究出版物(选定)他的研究贡献已获得Springer,环境可持续性协会和亚洲PGPR学会的授予。他有两项印度专利。研究出版物(选定)
总数讲座:60学分:4 U NIT 1:藻类(12个讲座)一般特征;生态和分布; Thallus组织和繁殖范围;藻类的分类;以下内容的形态和生命周期:Nostoc,衣原体,Oedogonium,Vaucheria,Fucus,Polysiphonia。藻类的经济重要性2:真菌(14个讲座)简介 - 一般特征,生态学和意义,thallus组织的范围,细胞壁组成,营养,繁殖和分类;真正的局限性 - 一般特征,生态学和意义,根茎的生命周期(zygomycota)青霉,替代品(Ascomycota),puccinia,agaricus(basidionymycota);共生协会 - 地层:一般帐户,繁殖和意义; Mycorrhiza:外生菌和内了解术及其意义单元3:大规模生殖器(14个讲座)统一特征的统一特征,过渡到土地习惯,几代人的交替。苔藓植物的一般特征,适应土地习惯,分类,thallus组织的范围。分类(直至家庭),形态学,解剖学和Marchantia和Funaria的生殖。(不包括发展细节)。生态学和经济重要性,特别提及泥石用。单元4:翼展(12个讲座)一般特征,分类,早期土地植物(库克森氏菌和rhynia)。分类(直至家庭),形态学,解剖学和selaginella,equisetum和pteris的繁殖。(不包括发展细节)。杂种和种子习惯,恒星进化。孢子体的生态和经济重要性。单元5:Gymnosperms(8个讲座)一般特征,分类。分类(直至家庭),形态学,解剖学和果石的繁殖。(不包括发展细节)。生态和经济重要性。
GSM:0803652009抽象粮食安全是世界上最重要和最有价值的秘密。因此,这项工作审查了与马铃薯生产有关的最具挑战性的问题。调查并隔离了与爱尔兰土豆块茎索相关的有趣。以下真菌; Alternta alternaria, Aspergillus candidus, A. fumigatoides, A. Nidulans, A. Niger, A. Terreus, Aureobasidium Pullullans, Botrytis Ceinerea, Chaetomium Globosum, Cladosporicum Herbarum, Currularia Lunata, Fusarium Moniliforme, F. Oxysporicum, F. Roseolum, F. Solani-tuberosi, Mortierlla Wolfi, Mucor Pusillus, Myceliopthhora thermophila, R. Stolenfer, Rhizophus Oyzae, Pennicilium Chrysgen, Paecilmyces Varioti, Rhizopus nigricans, scopuropsis breakaulis, syncephalastrum racemosmosum, Trichothecium Roseum and Ulacladium从腐烂的块茎中分离出宪章。根茎偷窃者的百分比最高,其次是尼日尔曲霉和替代品替代品。释放的致病性测试是,R。stolenfer是最有毒的,其次是F. oxyspoum,而Racemosmos M. caremosmos是最不毒的fangus。应鼓励使用良好的存储设施,适当的控制措施和改善爱尔兰的马铃薯量片,以减少储存的爱尔兰马铃薯交易的破坏。这样,在世界上进行粮食安全不仅将不仅尼日利亚,而且撒哈拉以南非洲将是一个忘记的问题。关键字:土豆块茎,牙齿,储存,腐烂,市场,预防,挑战,安全
生物技术和植物的政治探讨了“ apomixis”的神秘现象,某些植物“自我克隆”的能力及其作为农业和增强粮食安全的革命工具的潜力,这可能很快成为现实。通过历史人类学和民族志研究,马特·霍奇斯(Matt Hodges)追溯了Cimmyt Apomixis项目的发展,Cimmyt Apomixis Project是一项著名的边境研究计划,及其作为领先的公共私人合作伙伴关系(PPP)的重塑。他分析了从公共部门,以遗传学为基础的混合植物育种方法到现代农业生物技术和基因组学时代的快速发展的历史过渡,而PPP是领先的形式。在这样做时,他探讨了研究的社会环境如何塑造知识的产生,以及仍然是“未知”的事物,并结合了“ Apomixis技术”的发展。本书介绍了一种创造性的方法,该方法由时间,科学和技术研究的人类学以及与吉尔斯·德勒兹(Gilles Deleuze),保罗·拉比诺(Paul Rabinow),汉娜·阿伦特(Hannah Arendt),安德鲁·皮克林(Andrew Pickering)和爱德华多·维维罗斯·德·卡斯特罗(Eduardo Viveiros de Castro)的作品进行对话。hodges概述了整合历史概念和变成的新颖方式,并考虑了Apomixis如何为诸如众所周知的“根茎”等理论概念提供思想的替代形象。生物技术和植物的政治为基因组学和生物技术的日益增长的社会科学文献做出了宝贵的贡献,以及关于时间和历史的最新人类学辩论。
备忘录至:Bart Heldreth,博士学位。执行董事 - 美容成分审查,来自:Alexandra Kowcz,MS,MBA行业联络到CIR专家小组的日期日期:2024年10月23日,2024年10月23日,主题:科学文献评论:Nelumbo Nucifera衍生的成分的安全评估在化妆品中使用的成分(用于化妆品中)(发行日期:2024年10月2日,第2024卷;审查,对化妆品中使用的Nelumbo Nubifera衍生成分的安全评估。缩写 - 请纠正“葡萄糖-6-Phos [P]仇恨脱氢酶”(添加“ P”)和香水研究所的制造方法(“应该为”)制造方法 - 请移动有关根源提取物作为INCI名称的根茎提取物的信息。制造,花卉提取物,根提取物,种子提取物的方法 - 尽管作者可能已经说提取物是“用防腐剂处理的”,但表明它们正在提取物中修复一些东西。可以说将防腐剂添加到摘录中是适当的。制造方法,叶提取物 - 请纠正:“旋转和蒸发器”(删除“和”)成分和杂质,花提取物 - 参考文献9的摘要表明它是一种水提取物。请再次检查参考,看看是否可以删除“未提供溶剂”。组成和杂质,细菌提取物 - 用于从参考文献42制备提取物的溶剂(50%乙醇)。该调查正在进行中。化妆品使用 - 应该指出的是,Nelumbo Nucifera Phytoplacenta培养提取物尚未包含在PCPC使用调查浓度中。
摘要:在适应富含异种生物的水的过程中,生物系统经过多个阶段。第一个与社区的重组,结构的明显破坏以及活性生物降解剂的乘法有关。本研究的目的是描述在垃圾填埋场治疗中适应阶段发生的微生物组重组。在模型SBR(测序批处理反应器)中,模拟了21天的填埋液纯化过程。废水以浓度越来越高。进入未稀释的渗滤液时,激活的污泥结构分解(污泥体积指数-4.6 ml/g)。化学氧的需求和氮浓度保持在进水中的高值(分别为2321.11 mgO 2 /L和573.20 mg /l)。发现了大量的自由泳式细胞,并且伪摩an和acinetocacter属的有氧杂育和细菌的数量增加了125次。Azoarcus -Thauera簇(27%)和假单胞菌属。(16%)在活性污泥中注册为主要细菌基团。在微生物群落的变化结构中,γ-杆菌,家庭根茎科,糖疗法阶层主要代表。在悬浮的细菌,微分细菌科和伯克霍尔德科(Burkholderiaceae)以其降解异生物的能力而闻名。酶学分析表明,芳香结构的裂解的正通道在社区中活跃。在技术层面上,浸出的微生物群落中所述的变化似乎具有破坏性。但是,在微生物学层面上,明确概述了初始适应的趋势,如果继续,这可以提供高效的生物降解群落。
现代农业提高农作物资源获取效率的目标取决于根系与土壤之间的复杂关系。根和根际性状在营养和水的有效使用中起着至关重要的作用,尤其是在动态环境下。本综述强调了一种整体观点,挑战了养分和水吸收过程的常规分离以及综合方法的必要性。预期气候变化引起的极端天气事件的可能性增加,导致土壤水分和养分的供应性爆发,探索了根和根际性状的适应性潜力,以减轻压力。我们强调了根和根际特征的重要性,这些特征使农作物能够快速响应不同的资源可用性(即根区域中水和移动营养物质的存在)及其可及性(即将资源传输到根表面的可能性)。这些特征包括根毛,粘液和细胞外聚合物物质(EPS)渗出,Rhizosheath形成以及营养和水转运蛋白的表达。此外,我们认识到平衡碳投资的挑战,尤其是在压力下,优化特征必须考虑碳良好的策略。为了促进我们的理解,审查要求认识到受控环境的局限性精心设计的领域实验。非破坏性方法,例如微型根茎评估和原位稳定的同位素技术,并结合了诸如根部渗出分析的破坏性方法,用于评估根和根际性状。建模,实验和植物育种的整合对于开发能够适应不断发展的资源限制的弹性作物基因型至关重要。
1动物生产技术部门,印度尼西亚利马·普鲁·科塔(Lima puluh Kota)农业理工Payakumbuh; 2印度尼西亚利马·普鲁·科塔(Lima puluh Kota)的农业理工payakumbuh农业生产技术部门。Nilawati,Ramaiyulis,Yanti,R。和Gustian,A。(2024)。肉鸡内器官对基于基于基于乳酸的根茎和乳杆菌的益生菌的反应。国际农业技术杂志20(5):2055-2064。摘要这项研究确定了基于基于Rhyzopus oryzae和casei乳杆菌对肉鸡内器官的益生菌的影响。肉鸡参数的内部器官是心脏重量,肝脏重量,腹部脂肪重量,牙齿重量,肠道长度和肉鸡胰腺重量。在从yakult(发酵牛奶)中分离出的tempeh酵母和酪蛋白分离的研究中使用的R. oryzae。结果发现,肉鸡的心脏,肝脏,腹部脂肪,肠脂肪,肠长度和胰腺体重的重量存在显着差异(p <0.05),并且在益生菌和不给予益生菌的情况下,肉鸡的重量没有显着差异(p> 0.05)。通过施用益生菌增加了肉鸡的心重,肝脏达到10.15g,肝脏达到31.32g,胰腺达到3.96克,腹部脂肪降低,达到28.89g,肠道长度的增加达到192.48 cm。发现的结果表明,为基于R. oryzae和L. casei提供益生菌是为肉鸡内部器官带来的积极益处。关键字:肉鸡,内脏,益生菌简介
yarrowia lipolytica是异源蛋白质产生的替代酵母。Based on auto-cloning vectors, a set of 18 chromogenic cloning v ectors w as dev eloped, each containing one of the excisa b le auxotr ophic selecti v e markers URA3 e x, LYS5 e x, and LEU2 e x, and one of six different promoters: the constitutive pTEF, the phase dependent hybrid pHp4d, and the来自PEYK1和PEYL1 deri v ati v es的红氨酸诱导启动子。这些V eTor允许提高感兴趣基因的克隆速度。同时,通过废除细丝并引入了赖氨酸(LYS-)的合理性,开发了一种新的RPROT受体菌株JMY8647,这是基因工程的附加标记。使用此克隆str at gy,这是根茎的最佳靶向序列,如确定。与用野生型ROL信号序列相比,在八个靶向序列中,SP6信号序列在脂肪酶活性中提高了23%。使用杂种Ythritol-inducib le pr opters phu8eyk和peyl1-5ab(1.9和2.2次)与constituti v e ptef pr emoter进行比较时,使用YTHRITOL-Inducib le premoters phu8eyk和Peyl1-5ab(Peyl1-5ab)进行。 两次拷贝str ains在PTEF单子镜菌株上产生3.3倍的脂肪酶活性(266.7对79.7 mu/mg)。。两次拷贝str ains在PTEF单子镜菌株上产生3.3倍的脂肪酶活性(266.7对79.7 mu/mg)。