在连续种植多年后,农作物通常会受到生长抑制作用,这严重影响了其产量。在农业生产中,土壤熏蒸可以有效地减轻植物的生物压力。然而,对土壤熏蒸变化和植物反应的微生物群之间的关系,以及它们的存在是否对植物做出了有益的贡献,尚不清楚。我们通过影响微生物来探索土壤熏蒸的机理,从而促进植物生长。结果表明,dazomet的治疗显着缓解了烟草的生长迟缓,而这种差异在烟草的繁荣时期最为明显,当时植物高度和叶子面积分别增加了3.33次和3.24次。此外,地上组织的生长优势与根部优势显着相关(p <0.05)。同时,我们发现dazomet处理显着增加了与根相关的大量微生物基团,例如g_pedobacter,g_microbacterium和g_brevundimonas。结构方程建模的结果表明,与所应用的dazomet量正相关的微生物群落,并且与根部正相关(p <0.05)是有助于烟草生长优势的重要因素。总体而言,这项研究的发现对于增强我们通过熏蒸的土壤修复的理解具有重要意义,并且可能对dazomet熏蒸的实际应用具有很大的影响。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年1月8日发布。 https://doi.org/10.1101/2023.01.07.523123 doi:biorxiv Preprint
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2024年8月16日发布。 https://doi.org/10.1101/2024.08.13.607683 doi:biorxiv preprint
摘要。Artanti H、Joko T、Suryanti。2023. 用 Rhizophagus intraradices 和 Trichoderma asperellum 处理的葱根际细菌多样性和群落结构。生物多样性 24:6248-6255。根际是一个营养丰富且微生物活性高的区域。根际区域的条件会影响植物的生长和对病原体的抵抗力。本研究旨在确定使用 Rhizophagus intraradices 和 Trichoderma asperellum 对葱根际细菌多样性和群落结构以及对葱生长和健康的影响。对葱根际进行宏基因组分析,以确定用 R. intraradices、T. asperellum、对照和土体土壤处理的葱的细菌群落多样性和结构。结果表明,根际细菌的组成、多样性及根际细菌种类数量均受到R. intraradices和T. asperellum的影响,但两种真菌的施用对根际细菌的结构没有影响;根际细菌种类的多样性和数量能够促进植物的生长和抗逆性,尤其以R. intraradices的施用效果更佳。
制药创新杂志 2023;SP-12(11): 1033-1036 ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS 评级:5.23 TPI 2023; SP-12(11): 1033-1036 © 2023 TPI www.thepharmajournal.com 收稿日期: 2023-08-08 接受日期: 2023-11-09 Amrutha G 印度卡纳塔克邦卡拉布拉吉农业学院农业微生物学系 Mahadevaswamy 印度卡纳塔克邦赖久尔农业科学大学农业微生物学系 Swapna 印度卡纳塔克邦赖久尔农业科学大学农业微生物学系 Anand N 印度卡纳塔克邦卡拉布拉吉农业学院土壤科学与农业化学系 Balakrishna R 印度卡纳塔克邦哈加里农业学院农业微生物学系 Suhas PD 印度北方邦普拉亚格拉杰 SHUATS 植物病理学系 通讯作者: Amrutha G印度卡纳塔克邦卡拉布拉吉农学院
土壤受到有毒金属污染会降低农业产量和食品质量。生物修复是恢复受污染土壤的另一种方法,由具有不同机制(例如产生铁载体)的根际细菌介导,以抵消重金属的毒性。铁载体是螯合铁的小有机分子,铁是所有生物生命所必需的元素,并且是不同细胞过程所必需的。了解铁载体的合成机制及其对生物修复的潜在影响对于实施生态替代方案以减少使用化学品造成的不利影响至关重要。本综述介绍了铁载体的种类、合成、运输和调控;还介绍了在受污染环境的生物修复中使用产生铁载体的植物生长促进根际细菌 (PGPR) 的主要发现,以便整合信息,开发新的可持续替代方案,减少有毒金属对农业生产造成的负面影响。
由四个血红素组组成。血红素与过氧化物化合物反应。过氧化氢将导致细菌死亡,无法裂解H 2 O的毒性含量。酶过氧化酶在细胞裂解过程中起作用(Pulungan和Diana,2018)。需要知道酶过氧化酶对土壤和植物有显着有益。酶过氧化酶对植物的好处之一是通过总体报告证明了该酶位于过氧化物酶体中,该酶在植物生长,发育和压力反应中起重要作用也与水果成熟有关(Wang等,2019)。Kaushal等人(2018)的研究结果表明,酶过氧化酶可以是生物化的指标,尤其是对油粉土壤的修复。通过去除水中含有过氧化氢污染的水,酶过氧化酶也在净化纺织废物污染的水中起作用。
a 圣保罗大学“ Luiz de Queiroz ”农学院土壤科学系,皮拉西卡巴,圣保罗 13418-900,巴西 b 班戈大学自然科学学院,班戈,格温内斯 LL57 2UW,英国 c SoilsWest,可持续农业系统中心,食品未来研究所,默多克大学,默多克,西澳大利亚州 6150,澳大利亚 d 内蒙古农业大学草业、资源与环境学院,呼和浩特 010018,内蒙古自治区,中国内蒙古 e 圣保罗大学农业核能中心,皮拉西卡巴,圣保罗 13400-970,巴西 f 微生物生物信息学实验室,生物科学系,圣保罗州立大学,巴鲁,巴西 g 巴西农业研究公司 – Embrapa, Jaguariúna, S � ao Paulo 13918-110, Brazil h 塞尔联邦大学,土壤科学系,土壤微生物实验室,福塔莱萨,塞尔 ´ a,巴西 i 巴西农业研究公司 – Embrapa Semi ´ arido,彼得罗利纳,伯南布哥 56302-970,巴西
植物生长促进根际细菌 (PGPR) 通过增加养分吸收在农业生产中发挥着至关重要的作用 (Gonzalez 等人 2015 年,Chaud-hary 等人 2021b)。PGPR 促进植物生长可以通过直接或间接机制实现。在直接机制中,植物生长可能通过氮固定、磷酸盐和钾溶解 (Khan 等人 2014 年) 以及产生吲哚乙酸、1-氨基环丙烷-1-羧酸 (ACC) 等物质来促进。而在间接机制中,PGPR 促进植物生长可以通过产生抗生素或在植物中产生系统性抗性来减少植物病原微生物的有害影响 (Kumar 等人 2018 年) 来实现。PGPR 主要有两种类型:细胞外 PGPR (ePGPR) 和细胞内 PGPR (iPGPR)。固氮菌、沙雷氏菌、芽孢杆菌、农杆菌等细菌属于 ePGPR 类,而全根瘤菌、慢生根瘤菌、中生根瘤菌、根瘤菌等微生物属于 iPGPR 类。土壤中的磷以可溶形式存在,因此不易被植物吸收。PGPR 有助于植物吸收
8. 其他 (1)通过邮寄方式提交的投标如果在 2024 年 5 月 28 日星期二下午 5:00 前到达则为有效。请提前向第 322 会计中队承包团队提交您的邮寄投标,并务必确认其到达。 此外,如果投标金额相同,则会由未参与该投标的工作人员进行抽签,如果有新的投标,则会单独与您联系。 (2)不接受以电报、电话等方式提出的投标。 (3)投标人须在开标前提交资格认定通知书副本。 (传真也可以)(4)请同意在政府收到发票之日起30天内付款并提交您的投标。 (5)如您以代表人以外的其他人身份竞投,须在竞投前提交授权委托书。 (6)如有市场价格调查等委托,请予以配合。 (7)有关投标和合同的详情,请联系日本陆上自卫队山口警备队第322计事中队承包科。 (8)有关投标和合同的询问的联系:784 Kamiuno,Yamaguchi City,Yamaguchi县,日本753-8503日本,联系:Nagai,合同部分,第322届会计中队,地面自由度,自defense force -2283(直接)(9)有关规格的询问的联系:784 Kamiuno,Yamaguchi City,Yamaguchi县,日本753-8503日本,联系人:Inoue,运营单位管理部门,地面自卫部队,自卫队,Yamaguchi Garrison,Yamaguchi Garrison,collecly:ther:the counter:tele:083-3-2222222228 can can can can can can can can can can can can can can can can can can can cans can can can can can can can can can can can can can can comenty of。中队,地面自卫力量,第350会计中队,地面自卫队,凯塔希·加里森(Kaitaichi Garrison)和地面自卫队的中央军会计中队。它发布于https://www.mod.go.jp/gsdf/mae/mafin/。