制药创新杂志 2023;SP-12(11): 1033-1036 ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS 评级:5.23 TPI 2023; SP-12(11): 1033-1036 © 2023 TPI www.thepharmajournal.com 收稿日期: 2023-08-08 接受日期: 2023-11-09 Amrutha G 印度卡纳塔克邦卡拉布拉吉农业学院农业微生物学系 Mahadevaswamy 印度卡纳塔克邦赖久尔农业科学大学农业微生物学系 Swapna 印度卡纳塔克邦赖久尔农业科学大学农业微生物学系 Anand N 印度卡纳塔克邦卡拉布拉吉农业学院土壤科学与农业化学系 Balakrishna R 印度卡纳塔克邦哈加里农业学院农业微生物学系 Suhas PD 印度北方邦普拉亚格拉杰 SHUATS 植物病理学系 通讯作者: Amrutha G印度卡纳塔克邦卡拉布拉吉农学院
土壤受到有毒金属污染会降低农业产量和食品质量。生物修复是恢复受污染土壤的另一种方法,由具有不同机制(例如产生铁载体)的根际细菌介导,以抵消重金属的毒性。铁载体是螯合铁的小有机分子,铁是所有生物生命所必需的元素,并且是不同细胞过程所必需的。了解铁载体的合成机制及其对生物修复的潜在影响对于实施生态替代方案以减少使用化学品造成的不利影响至关重要。本综述介绍了铁载体的种类、合成、运输和调控;还介绍了在受污染环境的生物修复中使用产生铁载体的植物生长促进根际细菌 (PGPR) 的主要发现,以便整合信息,开发新的可持续替代方案,减少有毒金属对农业生产造成的负面影响。
由四个血红素组组成。血红素与过氧化物化合物反应。过氧化氢将导致细菌死亡,无法裂解H 2 O的毒性含量。酶过氧化酶在细胞裂解过程中起作用(Pulungan和Diana,2018)。需要知道酶过氧化酶对土壤和植物有显着有益。酶过氧化酶对植物的好处之一是通过总体报告证明了该酶位于过氧化物酶体中,该酶在植物生长,发育和压力反应中起重要作用也与水果成熟有关(Wang等,2019)。Kaushal等人(2018)的研究结果表明,酶过氧化酶可以是生物化的指标,尤其是对油粉土壤的修复。通过去除水中含有过氧化氢污染的水,酶过氧化酶也在净化纺织废物污染的水中起作用。
a 圣保罗大学“ Luiz de Queiroz ”农学院土壤科学系,皮拉西卡巴,圣保罗 13418-900,巴西 b 班戈大学自然科学学院,班戈,格温内斯 LL57 2UW,英国 c SoilsWest,可持续农业系统中心,食品未来研究所,默多克大学,默多克,西澳大利亚州 6150,澳大利亚 d 内蒙古农业大学草业、资源与环境学院,呼和浩特 010018,内蒙古自治区,中国内蒙古 e 圣保罗大学农业核能中心,皮拉西卡巴,圣保罗 13400-970,巴西 f 微生物生物信息学实验室,生物科学系,圣保罗州立大学,巴鲁,巴西 g 巴西农业研究公司 – Embrapa, Jaguariúna, S � ao Paulo 13918-110, Brazil h 塞尔联邦大学,土壤科学系,土壤微生物实验室,福塔莱萨,塞尔 ´ a,巴西 i 巴西农业研究公司 – Embrapa Semi ´ arido,彼得罗利纳,伯南布哥 56302-970,巴西
植物生长促进根际细菌 (PGPR) 通过增加养分吸收在农业生产中发挥着至关重要的作用 (Gonzalez 等人 2015 年,Chaud-hary 等人 2021b)。PGPR 促进植物生长可以通过直接或间接机制实现。在直接机制中,植物生长可能通过氮固定、磷酸盐和钾溶解 (Khan 等人 2014 年) 以及产生吲哚乙酸、1-氨基环丙烷-1-羧酸 (ACC) 等物质来促进。而在间接机制中,PGPR 促进植物生长可以通过产生抗生素或在植物中产生系统性抗性来减少植物病原微生物的有害影响 (Kumar 等人 2018 年) 来实现。PGPR 主要有两种类型:细胞外 PGPR (ePGPR) 和细胞内 PGPR (iPGPR)。固氮菌、沙雷氏菌、芽孢杆菌、农杆菌等细菌属于 ePGPR 类,而全根瘤菌、慢生根瘤菌、中生根瘤菌、根瘤菌等微生物属于 iPGPR 类。土壤中的磷以可溶形式存在,因此不易被植物吸收。PGPR 有助于植物吸收
摘要:本评论讨论了基因饮食对神经退行性疾病的影响和机制,基于可用的证据。生酮饮食是指高脂,中蛋白和低碳水化合物饮食,导致代谢转向酮症。这篇综述系统地总结了支持这种有效的神经性疾病治疗方法的科学文献,包括对线粒体功能的影响,氧化应激,神经蛋白凋亡,神经炎症,神经炎症和微生物群 - gut-gut-gut-brain-brain轴心。它还强调了生酮饮食对治疗阿尔茨海默氏病,帕金森氏病和运动神经元病的影响的临床证据。最后,它讨论了生酮的常见不良反应。尽管生酮饮食在治疗神经退行性疾病中的完整机制尚待阐明,但其临床疗效吸引了许多新的关注者。酮基因饮食是辅助治疗的良好候选者,但其特定的适用性取决于疾病的类型和程度。
At the beginning of this century climate change was predicted to cause a rise in global average tempera- ture of between 1 to 7 °C compared to pre-industrial levels by the end of the twenty-first century Such climate change is a consequence of unprecedented rates of greenhouse gas emissions into the atmos- phere caused by global industrialization, notably rais- ing the atmospheric pCO 2 to levels (> 400 ppm) not recorded for over 80万年,不仅对温度,而且对全球天气模式和降水产生影响(IPCC 2023)。当前的预测在这种温度变化的下边界不太乐观,到截至世纪末(2020年皇家学会),温度升高在2.6到4.8°C之间的预测可能达到800 ppm。根据当前的记录,2023年将连续第10年全球温度平均比工业水平高1°C以上,并且在全球范围内是记录中最温暖的一年(根据英国会议办公室,2023年的预测高于工业水平,高于工业水平1.2°C,2023年)。气候变化显然正在发生,社会已经接受,温度升高应仅限于1.5°C以限制负面影响,但是除非在未来几年遵循严格的缓解措施,否则这种愿望似乎极不可能(IPCC 2023)。
盐分是限制沿海滩涂土地利用的首要因素,根际微生物在增强作物抗逆性方面发挥着至关重要的作用,对环境变化高度敏感。水稻(Oryza sativa L.)是盐渍土改良的首选作物。本研究通过高通量测序技术,对不同盐胁迫处理下水稻根际土壤微生物群落进行了研究。研究发现,盐胁迫改变了水稻根际土壤细菌群落多样性、结构和功能。盐胁迫显著降低了水稻根际土壤细菌群落的丰富度和多样性。盐胁迫下,细菌群落中绿弯菌门、变形菌门和放线菌门丰度较高,厚壁菌门、酸杆菌门和粘球菌门相对丰度降低,拟杆菌门和蓝藻门相对丰度增加。水稻根际土壤细菌群落功能主要有化学异养、好氧_化学异养、光能营养等,其中化学异养和好氧_化学异养NS3(基土中添加3‰NaCl溶液)处理显著高于NS6(基土中添加6‰NaCl溶液)处理。本研究为开发水稻专用耐盐微生物菌剂提供了理论基础,为利用有益微生物改善滨海盐渍土土壤环境提供了可行的策略。
1 卓越转化医学中心,医学院,拉弗朗特拉大学,智利,智利,智利2学院,智利工程学院,智利自主大学,智利自主大学,智利,3生物技术研究中心,成本研究所环境,拉弗朗特拉大学,智利,智利5号,巴塞罗那大学自治大学,生物医学研究生生物学研究,生物医学研究I研究院饮食学,瓦尔帕拉索大学药学学院,瓦尔帕拉索大学,智利,8个微型生物培养中心,瓦尔帕拉索大学,瓦尔帕拉索大学,智利瓦尔帕拉索大学,智利9,安提法加斯塔大学健康科学系9生物医学系
抗菌药物用于抑制和管理动植物中的传染病。当细菌不再对抗菌药物反应导致疾病的威胁延伸,可怕的感染,无能为力和到期时,就会发生抗菌耐药性(AMR)。AMR是一种通常的程序,它逐渐涉及微生物的遗传变化。人类相互作用,特别是对菌丝体调节动植物中疾病的不当利用可促进其建立和传播。在本研究中,检查了根际真菌的甲醇提取物的抗氧化剂和抗菌活性。The two rhizospheric fungal species, Fusarium incarnatum and Aspergillus ochraceous , were distinguished on the basis of distinct and microscopic features.通过技术气相色谱 - 质谱法(GC-MS)检查了上面根际真菌的51种化合物。与鳄鱼皮曲霉相比,与大肠杆菌相反,与大肠杆菌相反,与大肠杆菌和26毫米的枯草芽孢杆菌相反。在硅对接研究中进一步显示,针对四环素的所有化合物(即4.95 kcal/mol),在-6.3 kcal/mol至-3.9 kcal/mol之间的结合能,这是食品和药物管理局(FDA)的抗菌药物认可的药物之一。