1996 年,他参加了在德克萨斯州萨姆休斯顿堡举行的陆军医师助理培训计划,并于 1998 年 2 月被任命为少尉。他的第一份工作是担任北卡罗来纳州布拉格堡第 82 空降师第 1 伞兵团(后来是第 3 伞兵团)的营外科医生。2001 年 7 月至 2002 年 7 月,他回到萨姆休斯顿堡,担任美国陆军医疗司令部总部外科医生总监的执行研究员、联合卫生参谋。完成研究员培训后,他担任德克萨斯州布利斯营战斗伤亡护理课程的主管。后来,他担任佐治亚州亨特陆军机场第 160 特种作战航空团(空降)第 3 营的飞行外科医生。 2006 年 7 月,索利兹上校担任美国总统的医师助理,后来担任 J-3 行动总监,是华盛顿特区白宫医疗部门的成员。2011 年,他担任佛罗里达州霍姆斯特德空军预备役基地南方特种作战司令部(空降)副外科医生。他被重新分配到五角大楼,担任陆军部长办公室陆军监察长副官,后来成为马里兰州米德堡金布罗门诊中心的骨科手术主任。索利兹上校随后被派往喀布尔担任驻阿富汗美军 (USFOR-A) 战略交战科科长,然后担任驻阿富汗巴格拉姆中央司令部联合战区创伤系统 (JTTS) 院前护理主任。 2015 年 6 月至 2017 年 6 月,索利兹上校指挥加州医疗支队和位于加州蒙特雷的蒙特雷陆军健康诊所。2017 年 7 月至 2018 年 6 月,他担任卫生与公众服务部战争学院研究员。2018 年 7 月至 2019 年 7 月,他在五角大楼担任陆军军医局局长兼美国陆军医疗司令部指挥官的执行助理。 2019 年 6 月至 2021 年 6 月,他指挥联合特种作战司令部联合医疗增强部队,位于北卡罗来纳州布拉格堡。索利兹上校于 2021 年 7 月至 2022 年 5 月担任太平洋地区卫生司令部参谋长。最近,他于 2022 年 5 月 9 日至 2023 年 5 月 19 日指挥三重陆军医疗中心。他于 2023 年 5 月 22 日接管太平洋医疗准备司令部司令,并担任印度-太平洋国防卫生网络主任。
威廉·哈贝森军士长是一名生物医学设备维护军士 (68A),驻扎在马里兰州德特里克堡的美国陆军医疗物资局 (USAMMA)。他目前是战略医疗物流研究员计划的实习生。他担任医疗维护管理部 (M3D) 的 NCOIC。他不仅是医疗维护方面的专家,而且是整个医疗物流方面的专家。他的主要职责是担任战区陆军外科医生的医疗维护顾问;计划、指导、协调和监督医疗维护操作;进行 MEDLOG 管理信息系统部署前培训 (DMLSS 和 GCSS-A),并实施医疗物资管理系统的计划、程序和方案。哈贝森军士长出生于南卡罗来纳州查尔斯顿。他在佐治亚州哥伦布长大。他于 2007 年 3 月参军。哈贝森上士在俄克拉荷马州西尔堡参加了基本战斗训练 (BCT),在谢泼德空军基地参加了高级个人训练 (AIT),并获得了 68A 军事职业专长 (MOS),即生物医学设备技术员。毕业后,他在德国兰茨图尔的兰茨图尔地区医疗中心担任生物医学设备维护技术员。他曾担任德克萨斯州胡德堡第 582 医疗后勤连的车间领班。驻扎在胡德堡期间,他被派往阿富汗巴格拉姆支援持久自由行动 (OEF-12-13)。他曾担任犹他州希尔空军基地 USAMM 医疗维护行动部 (MMOD) 的部门车间主管。哈贝森上士曾在韩国卡罗尔营第 563 医疗后勤连担任医疗维护 NCOIC 和第三排中士。哈贝森上士还担任过营级作战军士长,以及位于佐治亚州戈登堡的德怀特·戴维·艾森豪威尔陆军医疗中心临床工程军士长。哈贝森上士还担任过医疗维护管理部 (M3D) 的军士长、维护主管、机动军士、高级驾驶员,以及马里兰州德特里克堡第 6 医疗后勤管理中心的第一排军士长。军事教育:2022 年中级系统采购课程 2021 年高级领导课程 2021 年全球作战支援系统 - 陆军教练课程 2019 年战斗参谋士官课程 2018 年高级领导课程 2017 年未来指挥所课程 2015 年高级领导课程 2014 年 HP Unix 系统管理员课程
总统麦卡洛(McCullough)感谢主席柯林斯(Collins)和副主席萨瑟(Sasser)在访问期间与SACSCOC团队会面,露丝·斯托姆(Ruth Storm)和她的团队在教务长办公室会面,以期在整个过程中勤奋。总统麦卡洛(McCullough)强调了5月举行的八次开学仪式,包括为FSU巴拿马城举行的仪式和法学院和医学学院。FSU授予8,000个学士学位,硕士,博士,法律和医学学位。他指出,FSU仍然是该国最佳学生成功的大学之一,保留和毕业率是全美最好的。总统麦卡洛(McCullough)指出,FSU准备欢迎其新生班的成员参加夏季。今年的新生班的平均GPA为4.4,而88%的GPA占高中班的前10%。几年前,FSU入学的学生中有47%属于他们班级的前10%。总统麦卡洛(McCullough)报告说,FSU正在努力吸引FSU职业服务的第一任助理副总裁,并希望尽快宣布这一消息。总统麦卡洛(McCullough)指出,国际计划主任吉姆·皮茨(Jim Pitts)辞职。在皮茨博士的指导下,FSU已成为留学入学人数的国家领导者,排名3公立大学。Pitts博士将在FSU服务56年后于6月底退休。他感谢皮茨博士对FSU的不可思议的服务,并祝贺他应得的退休。他还指出,路易莎·布伦曼(Louisa Blenman)将担任临时董事的角色。总统麦卡洛(McCullough)提供了有关FSU Health和Inspire的最新消息。他报告说,凯旋海湾海岸委员会批准了FSU的Inspire Initiative近1亿美元奖励,其中包括在Bay County建造高级制造和航空航天设施。总统麦卡洛(McCullough)表示,FSU继续在北佛罗里达州建立关系和公司合作伙伴关系。总统麦卡洛(McCullough)强调了国家高磁场实验室的新总监凯瑟琳·阿姆(Kathleen Amm),他于5月加入该团队。总统麦卡洛(McCullough)感谢州长的职员德桑蒂斯(Desantis)和佛罗里达州立法机关在立法会议期间对FSU的支持。FSU获得了大量的运营,优先,绩效和PECO资金。他还感谢政府关系团队,柯林斯主席和FSU游说者克莱·英格拉姆(Clay Ingram)在立法会议上的出色工作。总统麦卡洛(McCullough)感谢高级副总裁凯尔·克拉克(Kyle Clark)和受托人亨德森(Henderson)和冈萨雷斯(Gonzalez)在FSU的2024-2025运营预算上所做的工作。
命令中士Jay A.高级担任第20司令中士,美国陆军通讯 - 电子司令部(CECOM),于2025年2月5日。担任9,000人,两星级全球司令部的指挥官,司令官高中司令是美国陆军指挥,控制,通信,计算机,网络,网络,情报,监视和侦察(C5ISR)和医疗材料集成商的高级应征顾问。CSM高是俄克拉荷马州阿德莫尔的本地人。他于1996年5月以卫星通信操作员/维护者的身份进入美国陆军。他的军事教育包括战斗人员徒劳的课程,训练中士学校,考试和评估基础课程,公司指挥官和第一军士课程,陆军太空干部课程,主要弹性培训师课程,项目管理课程,项目管理课程,美国陆军中士少校学院的67级课程。CSM High是Excelsior College的毕业生,拥有一般研究学士学位,并拥有精益六的Sigma绿色带认证。CSM High都在团队负责人到指挥专业的每个运营层面都担任领导职务。CSM High也是信号军团协会的银色和铜牌的汞命令的接受者,也是中士Audie Murphy俱乐部的成员。CSM高中与德克萨斯州阿比林的前梅兰妮·坎贝尔(Melanie Campbell)结婚,共有两个儿子。值得注意的任务包括第787号军事警察营的高级演习中士,密苏里州伦纳德·伍德堡;第43副副副警长,密苏里州伦纳德·伍德堡,第43副副官;德克萨斯州卡瓦佐斯堡的美国陆军运营测试司令部任务司令部测试局;司令少校,阿富汗巴格拉姆机场第25个信号营;大韩民国汉弗莱斯营的第一个信号旅的指挥官少校;美国陆军元素和J6高级应征官,佛罗里达州麦克迪尔空军基地的美国中央司令部。CSM高地的奖项和装饰包括国防高级服务奖章;优点军团;铜星勋章,一个橡树叶簇;优异的服务奖章,四个橡木叶簇;陆军表彰奖牌,三个橡树叶簇;陆军成就勋章,两个橡树叶簇;陆军良好的行为奖章,第九奖;国防部奖章;武装部队远征奖章;阿富汗竞选勋章,两位竞选明星;伊拉克竞选勋章,两位竞选明星;全球恐怖主义战争勋章;韩国国防部奖章;陆军士官发展缎带,数字6;陆军服役缎带;海外服务丝带,数字8;北约奖牌,一颗铜星;联合有功单位奖;陆军上级单位奖,一个橡树叶簇;战斗动作徽章;陆军基本太空徽章;钻中士徽章;还有德国武装部队的能力徽章,银。
Leland “Kent” Shea 机器人和自主系统产品经理 项目执行办公室 战斗支援和战斗服务支援 Shea 先生是机器人和自主系统产品经理,负责七个 ACAT III 和一个 ACAT IV 记录项目,这些项目处于采购生命周期的各个阶段,支持陆军保护士兵并使部队更具机动性和杀伤力的计划。他于 1996 年以宪兵身份加入陆军。2000 年,他以优异成绩毕业于西密歇根大学,并通过陆军预备役军官训练团被任命为通信兵团的杰出军事毕业生。他于 2003 年完成了信号官上尉职业课程,并于 2004 年完成了联合兵种参谋学校课程。他曾担任过各种领导和指挥职务,并曾部署支援波斯尼亚和黑塞哥维那稳定部队、阿富汗巴格拉姆持久自由行动和伊拉克巴格达伊拉克自由行动。他曾在韩国首尔完成过一次海外短途旅行,并参加了许多联合演习,包括埃及的明亮之星行动。2005 年离开现役陆军后,Shea 先生开始了他的平民职业生涯,担任 Booz Allen Hamilton 的助理。2006 年,他通过跨部门调动进入空军预备役,继续他的军事生涯,目前是空军预备役上校,被分配到佛罗里达州廷德尔空军基地的第一空军。他于 2014 年完成空军指挥参谋学院学业,并于 2017 年完成空军战争学院学业。在工业界工作一段时间后,Shea 先生于 2007 年成为陆军部文职人员,担任信息技术专家。2017 年,他转入项目管理职业领域。他的收购任务包括担任未来作战系统项目经理的团队负责人;未来作战系统项目经理、项目执行办公室、集成和系统集成理事会副主任。此外,他还担任过作战支援和作战服务支援项目执行办公室的执行官以及重型战术车辆产品经理的项目官。他拥有密歇根大学迪尔伯恩分校的工商管理硕士学位和劳伦斯理工大学的全球领导力和管理理学硕士学位。他是陆军采购部队的成员,是国防采购劳动力改进法案认证的项目管理高级专家,也是工程和技术管理认证的从业者。他是国防采办大学高级服务学院奖学金的毕业生。他的民事奖项和勋章包括功勋文职服务奖和文职服务指挥官奖。此外,国防工业协会 (NDIA) 战术轮式车辆部门选择他的重型战术车辆团队作为 2021 年红球快车奖 - 政府类别的获得者。他的军事奖项和勋章包括铜星勋章;功勋服务奖章,带有两个橡树叶簇;联合服务表彰奖章;航空航天表彰奖章;陆军表彰奖章,带有三个橡树叶簇;陆军成就奖章,带有两个橡树叶簇;海军总统单位嘉奖;航空航天杰出单位奖,带有一个橡树叶簇;国防服务奖章;阿富汗战役奖章,带有一颗服务之星;伊拉克战役奖章,带有一颗服务之星;全球反恐战争远征奖章;全球反恐战争服务奖章;韩国国防服务奖章;武装部队服务奖章;带有四片橡树叶的航空航天长期服务奖;陆军服务丝带;和北约奖章。
指挥士官长 Diamond D. Hough 是美国陆军医疗司令部第 20 任指挥士官长和美国陆军军医局长的高级士兵顾问。CSM Hough 曾在与其职业领域相称的多个领导岗位上任职,表现优异。这些职位包括指挥士官长、G3 作战士官长、首席临床士官、一级士官、支队士官、讲师/作家、观察员/控制员、医疗诊所 NCOIC、病房长和后送治疗士官。CSM Hough 的任职地点包括:路易斯安那州波尔克堡第 15 后送医院;路易斯安那州波尔克堡第 565 医疗连;路易斯安那州波尔克堡 JRTC(EAD);路易斯安那州波尔克堡第 115 野战医院;埃及西奈半岛美国第 1 陆军支援营;北卡罗来纳州布拉格堡第 44 医疗旅;第 5 机动陆军支援医院,北卡罗来纳州布拉格堡;第 55 医疗组,北卡罗来纳州布拉格堡;第 2 装甲骑兵团,北卡罗来纳州布拉格堡;第 232 医疗营 A 连,战斗医疗训练部,德克萨斯州萨姆休斯顿堡;B 连 Tripler 陆军医疗中心,夏威夷檀香山;HHC 212 机动陆军外科医院,德国米绍;B 连 212 战斗支援医院,德国米绍;DSTB,第 82 空降师 (辛辛纳图斯特遣部队) JFT-82,驻阿富汗巴格拉姆;第 101 支援旅,肯塔基州坎贝尔堡;G3 行动,欧洲区域医疗司令部,德国海德堡;第 14 战斗支援医院,佐治亚州本宁堡;第 62 医疗旅,华盛顿州刘易斯-麦克乔德联合基地;布鲁克陆军医疗中心 (BAMC),德克萨斯州萨姆休斯顿堡;以及弗吉尼亚州贝尔沃堡大西洋地区卫生司令部。CSM Hough 的平民教育包括德克萨斯大学埃尔帕索分校 (UTEP) 的领导力研究硕士学位。他还拥有檀香山夏米纳德大学政治学学士学位。他的军事教育包括但不限于:初级领导力发展课程(荣誉毕业生)、基础士官课程(指挥官名单)、高级士官课程(领导力奖获得者)、战斗参谋士官课程、一级军士课程和美国陆军士官学院(前 20%)。他还参加了:大师体能课程、精益六西格玛 (LSS) 黑带、平等机会课程、CSM 部队管理课程、高级士兵联合 PME 课程 1 和 2、指挥士官长法律导向 (CSMLO)、提名领导者课程、JMESI 顶点课程。 CSM Hough 获得的奖项包括功绩勋章(三等奖)、功绩服务奖章(四等奖)、联合服务嘉奖奖章(二等奖)、陆军嘉奖奖章(五等奖)、陆军成就奖章(八等奖)、联合功绩单位奖、陆军功绩单位嘉奖、陆军优秀单位奖、优良品行奖章(十等奖)、国防服务奖章(二等奖)、西南亚服务奖章(三等奖)、阿富汗战役、全球反恐战争远征奖章、全球反恐战争服务奖章、人道主义服务奖章、军事杰出志愿服务奖章(二等奖)、陆军士官专业发展勋带(编号 6)、陆军服务勋带、陆军海外服务勋带(编号 4)、北约奖章、多国部队和观察员奖章(编号 2)、沙特阿拉伯解放科威特奖章和科威特解放科威特奖章。他还获得了美国陆军参谋身份徽章、战斗行动徽章、专家战地医疗徽章、跳伞员徽章和空中突击徽章。此外,CSM Hough 还被选入奥迪·墨菲中士俱乐部和军事医疗功绩勋章。
机构名称 等级 Acharya Nagarjuna 大学 等级 1 Alagappa 大学 等级 1 阿里格尔穆斯林大学 AMU 等级 1 全印度医学科学院 (AIIMS) 博帕尔 等级 1 全印度医学科学院 (AIIMS) 布巴内斯瓦尔 等级 1 全印度医学科学院 (AIIMS) 焦特布尔 等级 1 全印度医学科学院 (AIIMS) 新德里 等级 1 全印度医学科学院 (AIIMS) 巴特那 等级 1 全印度医学科学院 (AIIMS) 赖布尔 等级 1 全印度医学科学院 (AIIMS) 瑞诗凯诗 等级 1 Amrita Vishwa Vidyapeetham,哥印拜陀 等级 1 安德拉大学 Waltair Visakhapatnam 等级 1 安纳马莱大学 等级 1 安娜大学,钦奈 等级 安娜大学,哥印拜陀 等级 1 安娜大学,蒂鲁吉拉帕利蒂鲁内尔维利 1 级 巴巴萨海布·比姆拉奥·安贝德卡尔大学,勒克瑙 1 级 贝拿勒斯印度教大学(BHU) 1 级 班斯塔利学院 1 级 班加罗尔大学(BU) 1 级 贝尔汉普尔大学 1 级 巴拉蒂亚尔大学 1 级 巴拉蒂达桑大学 1 级 巴拉特高等教育与研究学院(BIHER),钦奈 1 级 巴拉特高等教育与研究学院(BIHER) 1 级 巴拉蒂学院 1 级 比尔拉理工学院(BITS Pilani) 1 级 BS 阿卜杜勒·拉赫曼新月科学技术学院,钦奈 1 级 BS 阿卜杜勒·拉赫曼新月科学技术学院 1 级 中央渔业教育学院(CIFE),孟买 1 级 中央高等藏学研究所(CIHTS) 1 级 中央理工学院,科克拉贾尔(CITK) 一级 森图里恩科技管理大学,帕拉拉克蒙迪 一级 查罗塔尔科技大学(CHARUSAT) 一级 钦奈数学学院(CMI) 一级 切蒂纳德研究与教育学院(CARE) 一级 基督大学,班加罗尔 一级 科钦科技大学,科钦 一级 达塔梅格医学科学院,那格浦尔 一级 达亚尔巴格教育学院,阿格拉 一级 迪恩班杜乔图拉姆科技大学(DCRUST),穆尔塔尔 一级 德维阿希利耶学院(DAVV),印多尔 一级 德维阿希利耶学院(DAVV) 一级 印度阿萨姆邦技术教育局 一级 巴巴萨海布·阿姆贝德卡尔博士马拉特瓦达大学(BAMU),奥兰加巴德 一级Dr. DY Patil Vidyapeeth,浦那 一级 Hari Singh Gour Vishwavidyalaya 博士,萨加尔 一级 MGR 博士教育研究学院,金奈 一级 甘地格拉姆农村学院(GRI),丁迪古尔 一级 甘地技术与管理学院 - GITAM(视为大学),维沙卡帕特南 一级 GLA 大学,马图拉 一级 戈卡莱政治与经济学院,浦那 一级 古吉拉特邦阿育吠陀大学,贾姆讷格尔 一级 古吉拉特邦法医科学大学,甘地讷格尔 一级 古吉拉特邦国立法律大学(GNLU),甘地讷格尔 一级 古吉拉特邦 Vidyapith,艾哈迈达巴德 一级 古鲁戈宾德辛格因陀罗普拉斯塔大学,德里 一级 古鲁贾姆布赫斯瓦尔科技大学,希萨尔 一级 古鲁纳纳克大学(GNDU),阿姆利则 一级 Hemchandracharya 北古吉拉特邦大学(HNGU),帕坦 一级 Hemvati Nandan Bahuguna Garhwal 大学,斯利那加 一级 喜马偕尔邦大学(HPU),西姆拉 一级 印度斯坦理工学院和科学学院(HITS),帕杜尔 一级 霍米巴巴国家学院(HBNI),孟买 一级
DNA 是生命的基本蓝图,由一种长链分子组成,其中包含构建和维持所有生物体的指令。它存在于几乎所有细胞中,能够产生蛋白质并在代际之间传递遗传信息。这个来自鲑鱼精子的 DNA 样本属于德国图宾根大学。了解 DNA 的结构和功能彻底改变了疾病研究、遗传易感性评估、诊断和药物配方。它对每个个体都是独一无二的,这使它成为法医科学、识别犯罪、失踪人员和亲生父母的重要工具。在农业中,DNA 有助于改良牲畜和植物。DNA 的发现可以追溯到 1869 年,当时弗里德里希·米歇尔从白细胞中分离出核蛋白。他观察到它在各种组织中的存在并发现了它的遗传作用。阿尔布雷希特·科塞尔后来将其重新命名为脱氧核糖核酸 (DNA) 并分析了它的化学成分。DNA 的转变始于 20 世纪 30 年代初,当时奥斯瓦尔德·艾弗里在纽约洛克菲勒研究所进行了研究。他发现一种细菌与同种菌株的死细胞混合后会转变成有毒形态。弗雷德·格里菲斯于 1928 年首次观察到这一现象。艾弗里的工作以及柯林·麦克劳德和麦克林·麦卡锡的工作表明,这种转变与 DNA 有关。尽管当时并未得到普遍接受,但艾弗里的发现激发了人们对 DNA 的兴趣。几年后,阿尔弗雷德·赫尔希和玛莎·赫尔希于 1952 年进行的实验证实了 DNA 携带遗传信息。到了 20 世纪 50 年代,研究人员开始研究 DNA 的结构以了解其功能。罗莎琳德·富兰克林和莫里斯·威尔金斯与弗朗西斯·克里克和詹姆斯·沃森于 1953 年揭示了双螺旋模型。该结构由两条相互缠绕的链组成,具有四种互补的核苷酸:腺嘌呤、胞嘧啶、鸟嘌呤和胸腺嘧啶。双螺旋结构允许重建遗传信息,从而实现遗传性状的传递。 DNA 分析对于理解生命的生物机制和由基因突变引起的疾病至关重要。DNA 测序和 PCR 等技术使分析分子和识别基因突变成为可能。科学家还可以操纵和构建新形式的 DNA,称为重组 DNA 或基因克隆,这对于大规模药物生产和基因治疗至关重要。随着时间的推移,对核酸、蛋白质和非蛋白质成分的发现和理解也在不断发展。出生于加拿大哈利法克斯的 Oswald T Avery 发现了有丝分裂细胞分裂和染色体的过程。理查德·阿尔特曼将核蛋白改名为核酸,而约翰·弗里德里希·米歇尔去世。莱纳斯·鲍林引入了遗传学的概念,塞韦罗·奥乔亚诞生。亚历山大·托德创造了“基因”一词,保罗·扎梅克尼克描述了 DNA 的构成要素。所罗门·施皮格尔曼绘制了一条染色体图谱,弗朗西斯·克里克、莫里斯·威尔金斯、亚瑟·科恩伯格、弗雷德里克·桑格、罗莎琳·富兰克林、伊芙琳·威特金、西摩·本泽尔、哈尔·戈宾德·科拉纳、约翰·史密斯、约书亚·莱德伯格、TB·约翰逊和 RD·科格希尔也为该领域做出了重大贡献。其他值得注意的事件包括 PB·约翰逊和 RD·科格希尔检测到甲基化胞嘧啶衍生物是硫酸水解结核酸的副产物,但其他科学家很难复制他们的结果。保罗·伯格、马歇尔·W·尼伦伯格、詹姆斯·D·沃森、吴雷、丹尼尔·内森斯、沃纳·阿伯、富兰克林·斯塔尔、贝弗利·格里芬、芭芭拉·麦克林托克、汉密尔顿·O·史密斯、沃尔特·吉尔伯特、斯坦利·诺曼·科恩、赫伯特·博耶、大卫·巴尔的摩、约翰·E·苏尔斯顿、埃尔温·薛定谔、理查德·J·罗伯茨、克雷格·文特尔诞生。四种碱基比例的一致性是人们不断发现的。镰状细胞病被发现是基因突变的结果。埃丝特·莱德伯格对λ噬菌体有了突破性的发现。纯化的DNA和细胞DNA显示出螺旋结构,标志着首次观察到细菌对病毒的改造。DNA在保存遗传密码方面比蛋白质更重要这一点变得清晰起来。DNA的双螺旋结构通过三篇《自然》杂志发表的文章得到证实。莱纳斯·鲍林因其在氨基酸方面的工作获得了诺贝尔奖。弗雷德里克·桑格完成了胰岛素氨基酸的完整序列,而病毒被重构,RNA被发现。信使RNA首次被发现,DNA聚合酶被分离纯化,用于复制DNA。维克多·英格拉姆利用桑格测序技术破解了镰状细胞性贫血背后的遗传密码。弗朗西斯·克里克提出了遗传物质控制蛋白质合成的主要功能。首次实现了体外DNA合成。桑格获得了他的第一个诺贝尔化学奖,为理解基因调控和蛋白质合成步骤铺平了道路。美国国家生物医学研究基金会的成立标志着核酸测序新时代的开始。芭芭拉·麦克林托克发现了“跳跃基因”,同时破解了编码机制。桑格的研究导致了限制酶的发现,紫外线诱变可以通过暗曝光逆转。转移RNA成为第一个被测序的核酸分子,全面的蛋白质序列发表在《蛋白质序列和结构图集》上。遗传密码首次被总结,沃纳·阿伯尔预测了限制酶作为实验室工具的使用。发现了连接酶(一种促进 DNA 链连接的酶),并开发了自动蛋白质测序仪。从杂交细胞中分离出染色体,并组装了功能性噬菌体基因组。发表了 PCR 原理,并从黄石温泉中分离出一种新细菌。产生了生成重组 DNA 分子的概念。在分子生物学的早期,取得了一些重要的里程碑,为现代基因工程铺平了道路。关键事件包括: - 分离和鉴定人类或其他哺乳动物染色体的第一个限制性酶。 - 发现和分离逆转录酶。 - 发表了一种称为修复复制的过程,用于通过聚合酶合成短 DNA 双链和单链 DNA。 - 构建第一个质粒细菌克隆载体。 - 报道噬菌体 lambda DNA 的完整序列。 - 由于安全问题,Janet Mertz 在细菌中克隆重组 DNA 的实验被叫停。 - 首次发表了使用限制性酶切割 DNA 的实验。 - 关于重组 DNA 技术的生物危害的讨论公开化。 - 生成了第一个重组 DNA。 - Janet Mertz 和 Ronald Davis 发表了一种易于使用的重组 DNA 构建技术,该技术表明,当用限制性酶 EcoRI 切割 DNA 时,DNA 会产生粘性末端。 - 报道了 24 个碱基对的测序,以及细菌中 DNA 修复机制的发现 - SOS 反应。 - 开发了 Ames 测试来识别破坏 DNA 的化学物质。 - 首次举办人类基因图谱国际研讨会。 - DNA 首次成功地从一种生命形式转移到另一种生命形式。 - 重组基因研究开始受到监管。 - 重组 DNA 在大肠杆菌中成功复制,随后呼吁暂时停止基因工程,直到采取措施处理潜在的生物危害。 - Mertz 完成了她的博士学位,Sanger 和 Coulson 发表了他们的 DNA 测序加减法。 - DNA 甲基化被认为是胚胎中 X 染色体沉默的机制,并被认为是控制高等生物基因表达的重要机制。 - 阿西洛马会议呼吁自愿暂停基因工程研究。 - 酵母基因首次在大肠杆菌中表达。 - 原癌基因被认为是正常细胞遗传机制的一部分,在发育细胞中发挥着重要作用。 - NIH 发布了重组 DNA 实验指南。 - 人类生长激素经基因工程改造。 - 确定噬菌体 phi X174 DNA 的完整序列。 - 编写了第一个帮助汇编和分析 DNA 序列数据的计算机程序。 - 发表了两种不同的 DNA 测序方法,可以快速对长片段 DNA 进行测序。 - 在大肠杆菌中产生人类胰岛素。 - 诺贝尔奖表彰限制性酶的发现及其在分子遗传学问题中的应用。 - Biogen 为克隆乙型肝炎 DNA 和抗原的技术提交了初步的英国专利。- 爱丁堡大学科学家克隆出第一条 Epstein Barr 病毒 DNA 片段。 - 巴斯德研究所科学家报告成功分离并克隆大肠杆菌中的乙肝病毒 DNA 片段。 - 加州大学旧金山分校科学家宣布成功在大肠杆菌中克隆并表达 HBsAg。 - Biogen 申请欧洲专利,以克隆显示乙肝抗原特异性的 DNA 片段。 这一年,基因工程和 DNA 测序取得了重大进展。第一个基因克隆专利获得批准,为进一步的研究铺平了道路。塞萨尔·米尔斯坦提出使用重组 DNA 来改进单克隆抗体,而桑格获得了他的第二个诺贝尔化学奖。欧洲分子生物学实验室召开了计算和 DNA 序列会议,标志着该领域的一个里程碑。多瘤病毒 DNA 被测序,加州大学旧金山分校的科学家发表了一种在癌细胞中培养 HBsAg 抗原的方法。科学家报告首次成功开发转基因小鼠,同时世界上最大的核酸序列数据库通过电话网络免费开放。第一批转基因植物和小鼠被报道出来,展示了基因工程的威力。研究表明,Upjohn 开发的细胞毒性药物阿扎胞苷可抑制 DNA 甲基化。NIH 同意在 5 年内提供 320 万美元来建立和维护核酸序列数据库。第一种重组 DNA 药物获得批准,在肿瘤样本的胞嘧啶-鸟嘌呤 (CpG) 岛上发现 DNA 甲基化普遍缺失。聚合酶链反应 (PCR) 技术开始被开发作为扩增 DNA 的手段。PCR 实验的结果开始被报道,同时开发了针对乙型肝炎的转基因疫苗,并揭示了第一个基因指纹。嵌合单克隆抗体被开发出来,为更安全、更有效的单克隆抗体疗法奠定了基础。卡罗尔·格雷德 (Carol Greider) 和伊丽莎白·布莱克本 (Elizabeth Blackburn) 宣布发现端粒酶,这是一种在染色体末端添加额外 DNA 碱基的酶。DNA 甲基化被发现发生在称为 CpG 岛的特定 DNA 片段上,而 Mullis 和 Cetus 公司则为 PCR 技术申请了专利。DNA 指纹识别原理被提出,第一起使用 DNA 指纹识别解决的法律案件被解决。聚合酶链式反应 (PCR) 技术被发表,同时还有人类基因组测序计划。开发了一种用于自动进行 DNA 测序的机器,并创建了第一个人源化单克隆抗体。一种针对乙肝的基因工程疫苗获得批准,而干扰素被批准用于治疗毛细胞白血病。美国建立了监管框架来规范生物技术产品的开发和引进。比利时和美国批准了 Engerix-B 等基因工程乙肝疫苗。小规模临床试验的结果公布,包括一项针对输血后慢性乙型肝炎的重组干扰素-α疗法的试验。mRNA被封装到由阳离子脂质制成的脂质体中,并注射到小鼠细胞中,产生蛋白质。Campath-1H被制造出来——这是第一个临床上有用的人源化单克隆抗体。美国国会资助基因组测序,同时开发了一种快速搜索计算机程序来识别新序列中的基因。第一个催化甲基转移到DNA的哺乳动物酶(DNA甲基转移酶,DNMT)被克隆。比利时和美国批准了基因工程乙型肝炎疫苗,标志着基因工程和DNA测序的重大进步。法国和美国的基因突破导致癌症研究、基因测序和DNA分析方面的重大发现。乙型肝炎和囊性纤维化等疾病的疫苗和治疗方法的批准标志着医学科学的重大进步。DNA甲基化研究揭示了其与癌症发展和进展的联系。人类基因组计划正式启动,旨在对整个人类基因组进行测序,并在对包括细菌、病毒和哺乳动物在内的各种生物的基因组进行测序方面取得了重大里程碑。创新的 DNA 测序技术彻底改变了我们对基因进化、疾病诊断和个性化治疗的理解。研究人员已成功应用该技术研究肺炎链球菌对疫苗应用的快速适应。MinION 手持式 DNA 测序仪还被用于识别新生儿重症监护室中 MRSA 爆发的源头。除了在医学上的应用外,DNA 测序在了解神经系统疾病状况和识别防止生物衰老的罕见基因突变方面发挥了至关重要的作用。该技术还被用于预测哪些女性可以从化疗中受益,以及扫描婴儿和儿童的罕见疾病。此外,蛋白质结构的研究对于开发各种疾病的有效治疗方法至关重要。蛋白质由长链氨基酸组成,这些氨基酸扭曲并弯曲成独特的 3D 形状,使它们能够与其他分子相互作用并引发生物反应。蛋白质的形状可能因一个氨基酸的变化而改变,从而导致危及生命的疾病。了解蛋白质结构已导致医学领域取得重大突破,包括发现 HIV 蛋白酶结构,这有助于科学家设计有效的艾滋病治疗方法。此外,这些知识使研究人员能够识别致病病毒和细菌的致命弱点,为更有针对性和更有效的治疗铺平了道路。发现 HIV 蛋白酶的形状对于了解它如何感染细胞至关重要,最终导致开发出蛋白酶抑制剂等有效药物。这些突破将艾滋病毒治疗从死刑变成了可控的疾病,使人们能够长期与病毒共存。然而,艾滋病毒以进化和适应而闻名,随着时间的推移,一些治疗方法的效果会降低。研究人员目前正在研究新一代艾滋病毒蛋白酶抑制剂,以对抗这些耐药病毒株。在相关进展中,科学家们已经确定了艾滋病毒表面的一个不变区域,人类抗体可以靶向该区域,这有望阻止全球近 90% 的艾滋病毒株。这一发现为改进疫苗设计和可能改变一系列疾病生活的治疗方法铺平了道路。基于这些发现,研究人员正在探索对抗流感病毒的新方法,并在临床前试验中取得了令人鼓舞的结果。这项研究的更广泛影响可能导致更有效、更方便、副作用更少的各种医疗状况的治疗方法。