1 美国东北大学网络科学研究所和物理系,马萨诸塞州波士顿 02115;2 美国哈佛医学院布莱根妇女医院医学系钱宁网络医学分部,马萨诸塞州波士顿 02115;3 美国哈佛大学生物医学信息学系,马萨诸塞州波士顿 02115;4 美国哈佛大学哈佛数据科学计划,马萨诸塞州剑桥 02138。5 Scipher Medicine,221 Crescent St, Suite 103A,马萨诸塞州沃尔瑟姆 02453;6 美国东北大学物理系,马萨诸塞州波士顿 02115;7 萨班哲大学工程与自然科学学院,土耳其伊斯坦布尔 34956;8 美国马萨诸塞州波士顿大学 NEIDL 微生物学系;9 美国马萨诸塞州波士顿哈佛医学院布莱根妇女医院医学系10 匈牙利布达佩斯 1051,中欧大学网络与数据科学系。 * 这些作者的贡献相同
这些材料是初步的、非详尽的,仅供参考,以非排他性方式提供,以响应在 K-12 教育中实施人工智能的考虑需求。这些材料反映了一般见解,并可能根据当前可用的信息提出潜在的考虑选项,这些信息本质上是不确定的,可能会发生变化,但不包含确定未来行动方针所需的所有信息。这些材料中包含的见解和概念尚未经过验证或独立核实。对特定产品或组织的引用仅供说明,并不构成任何认可或推荐。这些材料不构成,也不应被解释为政策、会计、法律、医疗、税务或其他受监管的建议,或对任何特定行动方针的建议。这些材料不是结果的保证,不能依赖。未来结果可能与任何预期、预测或预测的陈述存在重大差异。鉴于技术发展日新月异,这些材料“按原样”提供,不作任何陈述或保证,并且明确声明对任何损失或损害不承担任何责任。接收方对其所有决定、使用这些材料以及遵守适用法律、法规和规定负全部责任。在采取任何具体步骤之前,请考虑寻求法律和其他相关认证/许可专家的建议。
建议引用推荐引用Gubin,Matthew M。; Artyomov,Maxim n。; Mardis,Elaine R。;和Schreiber,Robert D.,“肿瘤新抗原:建立个性化癌症免疫疗法的框架”。临床研究杂志。125,9。3413-3421。(2015)。https://digitalcommons.wustl.edu/open_access_pubs/4270
简介3什么是数据策略?3为什么要数据策略?3数据策略和人工智能4理解数据策略5数据策略5 1。防御5 2。进攻6从数据创造价值:四个角度 - 价值创建框架8开发成功的数据策略路线图 - 导航数据驱动的未来9个关键阶段,用于开发数据策略路线图9 1。定义数据目标以与业务目标保持一致9 2。评估并绘制当前数据格局10 3。拥抱数据治理10 4。数据收集和集成10 5。数据管理,存储和基础架构10 6。实施,执行和更改管理10 7。衡量和优化11构建有效的数据治理计划12数据治理和治理框架12步骤构建有效的数据治理计划13 1。安全的执行支持和所有权13 2。定义数据治理策略/目标13 3.建立数据治理团队13 4。评估当前数据资产和数据实践14 5。评估数据管理成熟度14 6。创建数据治理过程14 7。建立数据管家社区14 8。数据治理工具15 9。监视,测量和改进15个下一步15
摘要 :增材制造 (AM) 是一项尖端技术,可提供高达 100% 的材料效率和显著的重量减轻,这将对飞机燃料消耗产生积极影响,并且具有很高的设计自由度。因此,许多航空航天公司都在考虑实施 AM,这要归功于这些好处。因此,本研究的目的是帮助航空航天组织在不同的 AM 技术中进行选择。为此,通过半结构化访谈收集了 (8) 位 AM 领域专家的原始数据,并与二手数据进行交叉引用,以确定在选择用于航空航天应用的 AM 设备时需要考虑的关键因素。专家们强调了四种 AM 技术:激光粉末床熔合 (LPBF)、电子束粉末床熔合 (EBPBF)、线弧 AM (WAAM) 和激光金属沉积 (LMD),认为它们最适合航空航天应用。本研究的主要成果是开发了一个比较框架,帮助公司根据其主要业务或特定应用选择 AM 技术。
在过去的 30 年中,我们开展了大量大规模的纵向精神病学研究,以增进我们对精神疾病的理解和治疗。然而,尽管研究界付出了巨大的努力和大量资金,我们仍然缺乏对大多数精神疾病的因果理解。因此,大多数精神病学诊断和治疗仍然在症状体验的层面上进行,而不是衡量或解决根本原因。这导致了一种反复试验的方法,这种方法与潜在的因果关系不相符,临床结果也不佳。在这里,我们讨论了如何将源于因果因素探索而不是症状分组的研究框架应用于大规模多维数据,以帮助解决心理健康研究面临的一些当前挑战,进而解决临床结果。首先,我们描述了寻找心理健康状况因果驱动因素所面临的一些挑战和复杂性,重点关注目前评估和诊断精神疾病的方法、症状和原因之间的多对多映射、对异质症状组的生物标记的搜索以及影响我们心理的多个动态相互作用变量。其次,我们提出了一个以因果为导向的框架,该框架基于两个大型数据集,这两个数据集来自青少年大脑认知发展 (ABCD) 研究,这是美国最大的大脑发育和儿童健康长期研究,以及全球心智项目,这是世界上最大的心理健康档案数据库以及来自全球 140 万人的生活背景信息。最后,我们描述了如何对此类数据集使用聚类和因果推理等分析和机器学习方法,以帮助阐明对心理健康状况的更因果理解,从而能够采取诊断方法和预防解决方案,从根本上解决心理健康挑战。
没有大量个人的贡献,每个人都无法完成这个国家服务的国家服务框架,他们每个人都为实现其实现做出了独特且经常无法识别的贡献。首先,我们要对健康与保健部长Kailesh Kumar Singh Jagutpal博士表示衷心的感谢,他坚定不移地支持本文件的支持和指导。
表 1:决策框架由一个模板支持,该模板记录并概述了每个阶段的结果或结论摘要。模板中嵌入了指南,描述了应包含的内容。该模板旨在成为一份摘要文档,其中包含指向所有支持信息的明确链接,以证明所做决策。
