13 行政办公桌带侧柜 DGS 1007 主桌 - 1500*750*750MM 侧柜 -1500*600*650MM 37000 主桌 - 1800*750*750MM 侧柜 - 1650*600*650MM 40790
带软垫的长凳 (NDNB) 和带软垫和边桌的长凳 (NDNBT) • 长凳背面包括一个用于安装软垫的轨道,软垫可以安装在三个位置,左侧、右侧和中间 • 可以订购中央锁定位置的软垫,但可以在现场更改锁定位置 • 可以在带软垫的长凳的左侧或右侧指定可选边桌,并提供一个连续的接线底座 • 可以指定边桌带有实心顶部或数据/电气模块
霍尼韦尔保证其制造商品在适用的保修期内没有有缺陷的材料和有缺陷的工艺。除非霍尼韦尔以书面形式同意霍尼韦尔标准产品保修,否则适用;请参阅您的订单确认或咨询您当地的销售办公室以获取特定的保修详细信息。如果在承保期间将有保证的商品返回到霍尼韦尔,霍尼韦尔将根据其选择维修或更换,而无需收取霍尼韦尔自行决定有缺陷的那些物品。上述内容是买方的唯一补救措施,代替了所有明示或暗示的所有其他担保,包括适合性和适合特定目的的保证。在任何情况下,霍尼韦尔都不应对结果,特殊或间接损害赔偿责任。
摘要:由于开发了搅动的脉冲扩增技术,超快激光技术已从超快转移到了超强。超快激光技术,例如飞秒激光器和皮秒激光器,已迅速成为处理脆性和硬材料以及复杂的微型组件的灵活工具,这些工具被广泛用于医疗,航空航天,半导体应用等。但是,超快激光与脆性和硬材料之间相互作用的机制尚不清楚。同时,这些材料的超快激光处理仍然是一个挑战。此外,还需要开发使用超快激光器的高效和高精度制造。本综述着重于脆性和硬材料的超快激光处理的常见挑战和现状,例如基于镍的超合金,热屏障陶瓷,钻石,二氧化硅和碳化硅复合材料。首先,根据其带隙宽度,导热率和其他特征来区分不同的材料,以揭示在脆性和硬材料的超快激光处理过程中激光能量的吸收机制。其次,通过分析激光诱导的等离子体中的光子与电子和离子之间的相互作用以及与材料连续体的相互作用来研究激光能量转移和转化的机制。第三,讨论了关键参数与超快激光处理质量之间的关系。最后,详细探讨了复杂的三维微型组件的高效和高精度制造的方法。
近年来,人工智能系统取得了长足进步,带来了许多渗透到我们日常生活中的应用。然而,我们看到的仍然主要是狭义人工智能的例子:许多最近的发展通常集中在非常有限的能力和目标上,例如图像解释、自然语言处理、分类、预测等等。此外,虽然这些成功可以归功于改进的算法和技术,但它们也与海量数据集和计算能力的可用性密切相关 [ 21 ]。最先进的人工智能仍然缺乏许多自然包含在(人类)智能概念中的能力。这些能力的例子有:普遍性、适应性、稳健性、可解释性、因果分析、抽象性、常识推理、伦理推理 [28],以及由隐性和显性知识支持的复杂且无缝的学习与推理集成 [20]。
近年来,人工智能系统取得了长足进步,带来了许多渗透到我们日常生活的应用。然而,我们看到的仍然主要是狭义人工智能的例子:许多近期发展通常集中在非常有限的能力和目标上,例如图像解释、自然语言处理、分类、预测等等。此外,虽然这些成功可以归功于算法和技术的改进,但它们也与海量数据集和计算能力的可用性密切相关 [ 21 ]。最先进的人工智能仍然缺乏许多自然包含在(人类)智能概念中的能力。这些能力的例子有普遍性、适应性、鲁棒性、可解释性、因果分析、抽象、常识推理、道德推理 [ 28 ],以及由隐性和显性知识支持的复杂而无缝的学习与推理集成 [ 20 ]。
摘要:界面和边界处电荷,热和电磁场的基本载体之间的耦合相互作用引起了能够实现各种技术的能量过程。这些耦合载体之间的能量转导导致在这些表面上的热量耗散,通常是由热边界电阻量化的,因此推动了现代纳米技术的功能,这些功能继续在计算,通信,保健,清洁能源,电源回收,感应,感应,感应和制造中继续提供计算,通信,卫生保健,清洁能源,以少数几个数字来命名一少数的益处。目的是总结有关超快和纳米级能量转导和传热机制的最新作品,当时不同的热载体夫妇靠近接口或界面。我们回顾了固体,液体,气体和等离子体的耦合传热机制,这些机制驱动所得的界面传热和温度梯度,这是由于能量和动量耦合所致的各种电子,颤音,光子光子,极化子(Plasmon polarons and Polarons and Polaronsons and Polleonsons and Polleons)和分子的动量耦合而引起的。这些具有耦合能载体的界面热运输过程涉及相对较新的研究,因此,存在一些机会,可以进一步发展这些新生的领域,我们在本综述的整个过程中对此进行了评论。关键字:界面传热,能量转导,耦合局部平衡,电子 - 声子耦合,等离子体极化子,弹道热注入,等离子体,等离子体,从头算在界面上的电子 - 振动性动态,固体 - 气体相互作用
光电探测、光化学、活性超材料和超表面等应用需要从根本上理解金属纳米系统中的超快非热和热电子过程。低损耗单晶金的合成和研究最近取得了重大进展,为其在超薄纳米光子结构中的应用开辟了机会。在这里,我们揭示了单晶和多晶超薄(厚度低至 10 纳米)金膜之间热电子热化动力学的根本差异。弱激发和强激发状态的比较展示了中观金中热化和非热化电子动力学之间违反直觉的独特相互作用,以及 X 点带间跃迁对带内电子弛豫的重要影响。我们还通过实验证明了热电子转移到基底中以及基底热性质对超薄膜中电子-电子和电子-声子散射的影响。测量到单晶金向 TiO 2 的热电子注入效率接近 9%,接近理论极限。这些实验和建模结果揭示了结晶度和界面对众多应用中重要的微观电子过程的重要作用。
自从 Beaurepaire 等人发现超快退磁以来 [1],大量研究应用三温度模型 (3TM) 的变体来描述实验性超快磁化动力学。 [2–10] 通过引入瞬态电子、晶格和自旋自由度的有效温度(见图 1 d),3TM 使用三个耦合的微分方程来描述子系统之间的相互能量传递,为定量分析超快磁化动力学提供了一种直观的现象学方法。微观三温度模型 (M3TM) 改进了 3TM,通过 Elliott-Yafet 自旋翻转散射用磁化强度代替现象学自旋温度,考虑超快磁化动力学中的动量守恒。 [2] 此类公式与 Landau-Lifshitz-Bloch (LLB) 方程有关,其中与电子的耦合细节
实时可视化分子转变需要一种具有 A ˚ ngstr om 空间和飞秒时间原子分辨率的结构检索方法。含氢分子的成像还需要一种对氢核原子位置敏感的成像方法,大多数方法对氢散射的灵敏度相对较低。激光诱导电子衍射 (LIED) 是一种桌面技术,可以以亚 A ˚ ngstr om 和飞秒时空分辨率以及对氢散射的相对高灵敏度对气相多原子分子的超快结构变化进行成像。在这里,我们对孤立氨分子 (NH 3 ) 在强场电离后的伞状运动进行了成像。中性氨分子电离后,氨阳离子 (NH 3 + ) 在约 8 飞秒内经历超快几何转变,从金字塔结构 ( U HNH = 107 ) 变为平面结构 ( U HNH = 120 )。利用 LIED,我们在电离后 7:8 9:8 飞秒内恢复了近平面 ( U HNH = 117 6 5 ) 场修饰 NH 3 + 分子结构。我们测量的场修饰 NH 3 + 结构与使用量子化学从头计算计算出的平衡场修饰结构高度一致。