摘要 混合增材制造 (Hybrid-AM) 描述了多操作或多功能的增材制造系统。在工业中,混合增材制造的应用趋势日益增长,这带来了改进制造新零件或混合零件的新方法的挑战。混合增材制造无需任何组装操作即可生产功能齐全的组件。在本研究中,混合增材制造系统意味着要设计一个物体,该物体部分由预制或现成的零件制成,并通过电弧增材制造 (WAAM) 工艺添加。为此,设计并构建了一个使用脉冲 TIG-Wire-Arc 技术的混合增材制造原型系统。构建的成型金属沉积 (SMD) 系统在 x、y 和 z 轴上有三个驱动器和一个额外的旋转驱动器(第四轴)。使用混合增材制造机器,可以将线状材料沉积在现有的原始轮廓上,即棒、管、轮廓或任何 3D 表面上,从而缩短生产时间。通过这种方式,可以将螺旋形特征或扭曲的叶片形状添加到圆柱形零件上。在本研究中,使用开发的混合 AM 原型机将不锈钢螺旋桨叶片沉积在管道上。使用非平面刀具路径沉积后续层,并使用 4 轴 CNC 加工完成螺旋桨叶片的表面。
控制律的开发和评估将通过集成在 B01 05 直升机上的 IBC 系统进行,该系统已由 ECD 和 ZFL 在 1990 年和 1991 年用于开环高次谐波控制飞行测试。与这些测试相比,现在还将评估闭环控制律,并将安装更强大的实验系统:增强执行器的控制权限、先进的传感器和测量设备以及用于 IBC 控制律的快速坚固计算机。该计划这一部分的预期结果是:有效的控制律,用于减少机舱振动和叶片涡流相互作用 (BVI) 引起的外部噪声,并研究进一步控制律的潜力,以实现旋翼稳定、失速延迟、负载和功率降低。
高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,
高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,
高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,
高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,