1 Department of Physics and Astronomy, University of Turku, 20500 Turku, Finland e-mail: immanuel.c.jebaraj@gmail.com 2 LPC2E / CNRS, UMR 7328, 3A Avenue de la Recherche Scientifique, Orléans, France 3 Space Sciences Laboratory, University of California, Berkeley, CA, USA 4 The Blackett英国伦敦帝国学院物理学系实验室,5数学血浆天体物理学中心,数学系,Ku Leuven,Celestijnenlaan 200B,200B,3001比利时,比利时6皇后玛丽玛丽大学物理学和天文学学院,伦敦伦敦,伦敦,英国7号约翰斯·霍普金斯大学,美国霍普克斯大学,美国洛杉矶大学,美国洛雷尔(Lahosish)物理学,邮政信箱537,751 21瑞典9号乌普萨拉9号实验与应用物理研究所,基尔大学,德国基尔24118,德国基尔10号Heliophysics Science Science Division,NASA Goddard Space Flight Center,Greenbelt,Greenbelt,MD 20771
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年8月18日发布。 https://doi.org/10.1101/2024.08.18.608488 doi:biorxiv Preprint
摘要:柔顺机构广泛应用于精密工程、微纳操作、微电子等前沿科技领域,对多自由度柔顺机构的需求急剧增加。随着自由度的增加,柔顺机构的结构变得越来越复杂。本文提出了一种基于曲梁单元的六自由度柔顺机构。该柔顺机构具有结构简单、自由度多的优点。利用等几何分析法,建立了该机构的模型。静态分析表明可生成六个自由度。通过3D打印开发了该机构的样机。进行了六自由度加载试验。输出与输入具有高度的线性关系,结构间耦合性较低。我们相信这项研究为基于曲梁单元的柔顺机构设计迈出了开创性的一步。
应用:• 光镊 — 粒子或粒子聚集体的定向操控• 光通信 — 高带宽信息编码• 量子密码学/计算 — 高维量子信息编码• 灵敏光学检测• 原子、核和粒子物理学的基础科学研究(改进的选择规则、二向色性)
来自有或没有错过横向动量(E MISS T)的各种搜索的广泛搜索结果,用于限制一个两higgs-doublet模型(2HDM),并介导了普通和暗物质和暗物质(2HDM+ a)之间的相互作用,并介导相互作用。在2015 - 2018年期间,在大型强子对撞机的Atlas检测器记录的质子 - 质子碰撞数据中,质子 - 普罗顿碰撞数据的分析最多可消耗139 fb 1。三个最敏感搜索的结果是统计上的。这些搜索目标特征是带有巨大的t和lepton腐烂的Z玻孔;大小姐T和Higgs玻色子腐烂到底部的夸克;并分别在最终的夸克和底部夸克的最终状态下产生带电的希格斯玻色子。的约束是针对2HDM+ a中几个常见和新基准的场景得出的。2024科学中国出版社。由Elsevier B.V.和Science China Press出版。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
使用以各种剂量速率运行的工业辐照器研究了棕榈芽孢杆菌孢子对伽玛射线,X射线和电子束(E-Beam)的辐射抗性。剂量率如下:伽玛1和10 kgy/h; X射线10和200 kgy/h;电子束2000 kgy/h。回归分析表明,在所研究的吸收剂量范围为1 - 6 kgy的所有三个来源的幸存者曲线均为log 10线性,而与施加的剂量率无关。所有辐照技术都同样有效地使孢子失活,这反映在其可比的D值(p> 0.05)中,剂量率对杀菌效率没有影响。这些结果表明,无论递送指定的最低剂量,灭菌剂量都可以在医疗设备的工业灭菌技术中跨性别剂量跨性别,而不会对产品无菌产生任何影响。这些发现是从一项新的单一研究中进行的,涵盖了所有可用的工业辐射技术出于医疗设备的灭菌目的,可以促进我们对微生物破坏的理解,这与暴露于重要的灭菌方式有关,这将有助于这些技术在新兴行业机会中的未来适用性。
上下文。观察性和理论证据表明,从X级浮游到纳米流动的太阳大气中,加速颗粒的光束都是在太阳大气中产生的各种大小的浮动事件。这些类型的颗粒的当前模型渗透循环假设一个孤立的1D气氛。目标。可以通过3D辐射磁水动力学代码提供对加速颗粒进行建模的更现实的环境。在这里,我们提出了一个简单的模型,用于粒子加速度和在安静太阳大气的3D模拟的背景下,从对流带到电晕。然后,我们检查粒子梁引入的能量的附加运输。方法。通过检测磁性拓扑的变化来识别与磁重新连接相关的粒子加速度的位置。在每个位置,从局部条件估算了加速粒子分布的参数。然后沿着磁场传播粒子分布,并计算出与环境等离子体的库仑碰撞引起的能量沉积。结果。我们发现,粒子梁源于分布在整个电晕上的扩展加速区。到达过渡区域后,它们会收敛并产生穿透色球的强烈加热链。在这些链中,光束加热始终在过渡区域底部以下主导导电加热。这表明粒子梁甚至在活动区域之外都会改变能量传输。