(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年8月18日发布。 https://doi.org/10.1101/2024.08.18.608488 doi:biorxiv Preprint
摘要:柔顺机构广泛应用于精密工程、微纳操作、微电子等前沿科技领域,对多自由度柔顺机构的需求急剧增加。随着自由度的增加,柔顺机构的结构变得越来越复杂。本文提出了一种基于曲梁单元的六自由度柔顺机构。该柔顺机构具有结构简单、自由度多的优点。利用等几何分析法,建立了该机构的模型。静态分析表明可生成六个自由度。通过3D打印开发了该机构的样机。进行了六自由度加载试验。输出与输入具有高度的线性关系,结构间耦合性较低。我们相信这项研究为基于曲梁单元的柔顺机构设计迈出了开创性的一步。
应用:• 光镊 — 粒子或粒子聚集体的定向操控• 光通信 — 高带宽信息编码• 量子密码学/计算 — 高维量子信息编码• 灵敏光学检测• 原子、核和粒子物理学的基础科学研究(改进的选择规则、二向色性)
摘要:本教程回顾了作者在过去 35 年中对精密空间结构主动控制的贡献。它基于 2022 年 9 月在巴黎举行的 IAC-2022 宇航大会上的 Santini 演讲。第一部分致力于空间桁架的主动阻尼,重点是稳健性。通过使用分散的同位执行器-传感器对来实现保证的稳定性。所谓的积分力反馈 (IFF) 简单、稳健且有效,并且可以使用基于模态分析的简单公式轻松预测性能。这些预测已通过大量实验证实。桁架的阻尼策略已扩展到电缆结构,并已通过实验证实。第二部分解决了隔振问题:将敏感有效载荷与航天器引起的振动隔离开来(即姿态控制反作用轮和陀螺仪的不平衡质量)。讨论了基于 Gough-Stewart 平台的六轴隔离器;再次强调,该方法强调了稳健性。提出了两种不同的解决方案:第一种(主动隔离)使用分散控制器,该控制器具有并置的执行器和力传感器对,并具有 IFF 控制。结果表明,这种特殊的天棚实现方式与传统天棚不同,即使它连接的两个子结构是柔性的(大型空间结构的典型特征),也能保证稳定性。第二种方法(被动)讨论了松弛隔离器的电磁实现方式,其中线性阻尼器的经典阻尼器被麦克斯韦单元取代,导致渐近衰减率为 -40 dB/十倍,类似于天棚(尽管在电子方面要简单得多)。讲座的第三部分总结了最近在柔性镜控制方面所做的研究:(i)由压电陶瓷(PZT)致动器阵列控制的自适应光学(AO)平面镜和(ii)由压电聚合物致动器(PVDF-TrFE)阵列控制的球形薄壳聚合物反射镜,旨在部署在太空中。
Fe 2 O 3 /Cr 2 O 3 /Fe 2 O 3 ( f )、Cr 2 O 3 /Fe 2 O 3 ( g ) 和 Fe 2 O 3 ( h ) 样品。XMLD 光谱
非封闭式振膜的压电MEMS扬声器有望产生高声压级(SPL),但存在严重的振膜破裂问题。本文提出了一种具有准封闭式振膜的新型压电MEMS扬声器。准封闭式振膜由对角切割但中心相连的振膜组成,振膜上涂有一层薄薄的Parylene-C。在应力分散结构的共同作用下,Parylene-C薄膜的应用可防止振膜破裂并显著减少空气损耗。成功制作了尺寸为2.5×2.5 mm 2 的小尺寸MEMS扬声器,并在711耳模拟器中对其声学性能进行了测试。在驱动电压为4 V pp 下,测得的SPL在11.8 kHz时达到最大值124 dB。在 35 V pp 的电压下,低频范围 (20 – 500 Hz) 内的 SPL 进一步增加到 88 dB。
来自有或没有错过横向动量(E MISS T)的各种搜索的广泛搜索结果,用于限制一个两higgs-doublet模型(2HDM),并介导了普通和暗物质和暗物质(2HDM+ a)之间的相互作用,并介导相互作用。在2015 - 2018年期间,在大型强子对撞机的Atlas检测器记录的质子 - 质子碰撞数据中,质子 - 普罗顿碰撞数据的分析最多可消耗139 fb 1。三个最敏感搜索的结果是统计上的。这些搜索目标特征是带有巨大的t和lepton腐烂的Z玻孔;大小姐T和Higgs玻色子腐烂到底部的夸克;并分别在最终的夸克和底部夸克的最终状态下产生带电的希格斯玻色子。的约束是针对2HDM+ a中几个常见和新基准的场景得出的。2024科学中国出版社。由Elsevier B.V.和Science China Press出版。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。