摘要 — 现代神经调节系统通常提供大量的记录和刺激通道,这降低了每个通道的可用功率和面积预算。为了在面积限制越来越严格的情况下保持必要的输入参考噪声性能,斩波神经前端通常是首选方式,因为斩波稳定可以同时改善(1/f)噪声和面积消耗。现有技术中,通过基于输入电压缓冲器的阻抗增强器解决了输入阻抗大幅降低的问题。这些缓冲器对大型输入电容器进行预充电,减少从电极吸取的电荷并有效提高输入阻抗。这些缓冲器上的偏移直接转化为电荷转移到电极,这会加速电极老化。为了解决这个问题,提出了一种具有超低时间平均偏移的电压缓冲器,它通过定期重新配置来消除偏移,从而最大限度地减少意外的电荷转移。本文详细介绍了背景和电路设计,并介绍了在 180 nm HV CMOS 工艺中实现的原型的测量结果。测量结果证实,发生了与信号无关的缓冲器偏移引起的电荷转移,并且可以通过所提出的缓冲器重新配置来缓解这种电荷转移,而不会对输入阻抗增强器的操作产生不利影响。所提出的神经记录器前端实现了最先进的性能,面积消耗为 0.036 mm2,输入参考噪声为 1.32 µV rms(1 Hz 至 200 Hz)和 3.36 µV rms(0.2 kHz 至 10 kHz),功耗为 13.7 µW(1.8 V 电源),以及 50 Hz 时的 CMRR 和 PSRR ≥ 83 dB。
4) Scheffer IE、Berkovic S、Capovilla G 等。ILAE 癫痫分类:ILAE 分类和术语委员会立场文件。癫痫 2017;58:512-21。5) Gibbs FA、Gibbs EL。脑电图图集。第 1 卷:方法和对照。马萨诸塞州雷丁:Addison-Wesley,1951 年。6) Yoshida Harumi。应用等电位脑电图对小儿脑电图发育的研究。 脑电图和肌电图 1984 ; 12 : 248-60。7) Yoshinaga H, Koutroumanidis M, Kobayashi K, et al. Panayiotopoulos 综合征的脑电图偶极子特征。癫痫 2006 ; 47 : 781-7。8) Seeck M, Koessler L, Bast T, et al. IFCN 的标准化脑电图电极阵列。临床神经生理学 2017 ; 128 : 2070-7。9) Otsubo H, Sharma R, Elliott I, Holowka S, Rutka JT, Snead OC 3rd. 通过侵入性监测硬膜下电极确认患有右额中央癫痫的青少年的两个脑磁图癫痫灶。癫痫1999;40:608-13。10) Shiraishi H、Ahlfors SP、Stufflebeam SM 等。比较三种用脑磁图定位发作间期癫痫样放电的方法。J Clin Neurophysiol 2011;28:431-40。11) Kobayashi K、Akiyama T、Oka M、Endoh F、Yoshinaga H。West 综合征患者在高峰失常期间出现快速(40-150 Hz)振荡风暴。Ann Neurol 2015;77:58-67。12) Kobayashi K、Watanabe Y、Inoue T、Oka M、Yoshinaga H、Ohtsuka Y。儿童睡眠诱发的电癫痫持续状态中头皮记录的高频振荡。癫痫2010;51:2190-4。13) Cao J,Zhao Y,Shan X,等。基于脑电图记录的大脑功能和有效连接:综述。Hum Brain Mapp 2022;43:860-79。14) Willett FR,Avansino DT,Hochberg LR,Henderson JM,Shenoy KV。通过手写实现高性能的脑到文本通信。Nature 2021;593:249-54。15) Jing J,Sun H,Kim JA,等。脑电图解释过程中癫痫样放电专家级自动检测的开发。JAMA Neurol 2020;77:103-8。16) Kobayashi K,Shibata T,Tsuchiya H, Akiyama K. 基于人工智能的儿科头皮脑电图癫痫放电检测:一项初步研究。Acta Med Okayama 2022;76:617-24。17)Scheffer LK、Xu CS、Januszewski M 等。成年果蝇中枢脑的连接组和分析。Elife 2020;9:e57443。18)Cutsuridis V、Cobb S、Graham BP。海马 CA1 微电路模型中的编码和检索。海马 2010;20:423-46。19)Kobayashi K、Akiyama T、Ohmori I、Yoshinaga H、Gotman J。动作电位导致用远离神经元的电极记录的癫痫高频振荡。临床神经生理学2015;126:873-81。
摘要 干电极的使用正在迅速增加。由于干电极的阻抗很高,因此在电极和放大器之间的连接节点处有一个高阻抗节点。这会导致吸收电力线信号,而高 CMRR 放大器对于消除这种情况至关重要。在本文中,我们提出了一种具有高 CMRR 的低功耗低噪声斩波稳定放大器。为了最大限度地降低输入参考噪声,采用了基于反相器的差分放大器。同时,设计了一个直流伺服环路来抑制电极的直流偏移。由于所有级都需要共模反馈,因此每个放大器都使用了合适的电路。此外,在最后一级实施了斩波尖峰滤波器以衰减斩波器的尖峰。最后,为了消除失配和后期布局造成的偏移效应,采用了直流偏移抑制技术。设计的电路采用标准 180 nm CMOS 技术进行仿真。设计的斩波放大器在 1.2 V 电源下仅消耗 1.1 l W。中频带增益为 40 dB,带宽为 0.5 至 200 Hz。其带宽内的总输入参考噪声为 1 l V rms。因此,设计电路的 NEF 和 PEF 分别为 2.7 和 9.7。为了分析所提出的斩波放大器在工艺和失配变化下的性能,进行了蒙特卡罗模拟。根据 200 次蒙特卡罗模拟,CMRR 和 PSRR 分别为 124 dB(标准偏差为 6.9 dB)和 107 dB(标准偏差为 7.7 dB)。最终,总面积消耗为 0.1 mm 2(不含焊盘)。
梁搜索是一种广泛使用的近似算法,可根据此类分布找到最高的概率字符串。它一直是在许多生成任务中解码概率模型的首选工具,例如机器翻译,抽象性摘要和约束解码。有时,它在产出质量,计算不足和缺乏多样性方面表现出显着的差异。本文首先旨在更好地了解Beam Search的成功。我们确定了光束搜索中固有的归纳偏差,导致我们提出成功是由于其隐含的统一信息密度执行(一种与心理语言理论相关的属性)在生成的文本中。然后,我们解决了标准光束搜索的三个局限性:它的不具体率,其产生低多样性的集合的趋势及其确定性。为了解决第一个限制,我们引入了更加有效的光束搜索变体,该变体将算法构架为基于议程的过程,并采用了最优先的优先级;这种方法通过消除不必要的路径探索来降低计算成本。我们接下来要展示如何将光束搜索中的每个一代步骤作为亚次确定的最大化问题,以及该框架如何以原则上的方式优化设置级别特征(例如多样性)。我们进一步开发了光束搜索的随机概括,该概述促进了不同样本的产生,并可以在模型下建立统计上一致的估计器。我们提供了这些新技术在提高光束搜索的效率,多样性和适应性作为NLG任务的解码算法方面的有效性的经验证据。在本文的最后一部分中,我们使用有关有效解码策略的特性的见解来提出一种新的解码算法,该算法旨在产生模仿人类交流中信息内容模式的文本。我们观察到这种算法会导致高质量的文本,从而始终减少退化的重复,即概率语言发生器已知偶尔会在其他解码策略下产生。本文提出的方法为研究人员和从业人员提供了有价值的工具,以创建更好的概率语言发生器。