PCB connector, nominal cross section: 2.5 mm 2 , color: light grey, nominal current: 12 A, rated voltage (III/2): 320 V, contact surface: Tin, contact connection type: Socket, number of potentials: 3, number of rows: 1, number of positions: 3, number of connections: 3, product range: FKCT 2,5/..-ST, pitch: 5 mm, connection method: Push-in spring connection,导体/PCB连接方向:0°,锁定夹: - 锁定夹,插件系统:梳子MSTB 2,5,锁定:无,安装:无,安装:无包装类型:包装纸板
命名规则 AUTH 封面:头盔迷彩 1 下巴绑带 ADVANCE 1 下巴绑带组件 1 护垫组,悬挂 1 头盔:高级梳子 1 行李袋:尼龙 DUC 2 插入物,急救箱 1 安全眼镜,REVISI 1 急救包,1 防弹衣:拦截 1 插入物:小型武器 PR 2 插入物增强型小型 2 化学生物面罩:(M40) 1 封面,头盔,迷彩 1 化学生物面罩:(M50) 1 外套(JSLIST) 1 裤子(JSLIST) 1 手套(JSLIST) 1 靴子(JSLIST) 1 罐C-2A1 (JSLIST) 1 CP 头盔罩 (JSLIST) 1 净化套件 M295 (JSLIST) 1 M8 纸 (JSLIST) 1 化学品袋 (JSLIST) 1
正交晶格是挤压真空字段的一个耦合阵列,它在塑造多模光光的量子特性方面为新途径提供了新的途径[1-3]。在非热,非耗散物理学的框架内描述了这种晶格,并表现出有趣的晶格现象,例如晶格异常点,边缘状态,纠缠和非赫米特式皮肤效应,从根本上构成基本的新方法,以控制量子量量子流量[1,4]。非线性谐振器适用于研究多模配的过程和挤压,在χ(2)和χ(3)材料[5-12]中是非疾病的,但观察到光子正准晶格中的非柔米晶状体现象。非常明显的是,在耗散性的Kerr Microcombs [13]中,它彻底改变了光子技术,这种晶格出现并控制了导致梳理形成的量子噪声。因此,它们是一个独特的机会,可以实现正交晶格,并研究和操纵多模量子噪声,这对于任何量子技术至关重要。在这里,我们第一次在光子正交晶格中实验研究了非炎性晶格效应。我们的光子正交晶格出现在Kerr微型炸弹过渡中,使我们能够观察到分散对称性,频率依赖性挤压超模型和在集成设置中的非Hermitian Lattice Physics之间的基本连接。我们的工作符合两个主要领域,量子非官员物理和kerr梳子,并为利用耗散的Kerr梳子打开了大门,以实验探索量子量子量子的富含非热的物理学,并开发新工具,以研究Kerr Combs的量子噪声和形成的新工具。
引言蜂蜜是所有年龄段人民的美味食物。这种甜蜜的花蜜是由Honeybee(Apis Mellifera)从植物到梳子收集的,因此天然蜂蜜中存在许多花粉颗粒。蜜蜂花粉一直是人类饮食的一部分,并由约40%的碳水化合物,35%蛋白质,4-10%水,5%脂质和5-15%的其他物质组成,例如氨基酸,氨基酸,维生素,矿物质,矿物质和抗氧化物质(Morxidantentes)(Mornations)(Morgano等)。蜜蜂花粉富含多种抗氧化剂,包括类黄酮,类胡萝卜素,槲皮素,kaempferol和谷胱甘肽(Denisow&Denisow- Pietrzyk,2016年)。蜜蜂花粉中的抗氧化剂可能会保护脂质免受氧化的氧化,以防止
每天400万亿分之一。罗斯隆德(Roslund)和联盟(Collgues)报告的工作是朝着从实验室过渡到现实世界的光学原子时钟迈出的至关重要的一步,在那里他们可以支持海上,空中和基于空间的系统。为了促进这种过渡,重要的是要在各种不同的环境和物理条件下进行更多测试,并能够批量生产必要的激光器和光学频率梳子。随着作者报告的高性能和小规模,光原子时钟可以支持许多平台上的精确计时,从而减轻了对GPS等外部时机源的依赖。未来的便携式光学原子时钟甚至可以纳入研究基本物理学和计量学的创新方式,包括对一般相对论和地理学4的测试。
摘要:Gibellula属(Cordycipitaceae:Shotopeales)包括蜘蛛宿主的致病性和特异性物种。在这里,我们报告了一种新型物种,该物种感染了不列颠群岛的元元(Tetragnathidae)的洞穴式蜘蛛。新物种,Gibellula Attenboroughii进行了描述和说明,并讨论了其生态。得出的结论是,感染的蜘蛛表现出与僵尸蚂蚁报道的行为变化。基于Fungarium Records和文献搜索,不列颠群岛中Gibellula属的隐藏多样性进一步强调。两种先前分配给Torrubiella属的蜘蛛病原体现在根据其颗粒稳定性的形态转移到Gibellula属,并根据一个真菌 - 一名名称的主动性:Gibellula Albolanata comb。nov。和g。aranicida梳子。nov。
储层计算是一种植根于经常性神经网络的时间序列处理的监督机器学习方法[1,2]。受到大脑机制的启发,许多相互连接的人工神经元过程输入输入并显示内部记忆。反复的神经网络随后适合于语音识别等时间任务[3,4],但以难以训练的代价。网络的所有权重需要在时间[5]中使用反向传播进行训练,这是一种耗时的,并非总是在融合[6]。不同,在储层计算(RC)中,仅训练输出层的权重以处理信息[7,8]。这些结构是由三个元素组成的:将数据注入系统中的输入层,由随机连接的大量神经元(或节点)组成的储层,以及一个外部(或读取)层以从储层中提取信息。在储层上的某些条件下,用简单的线性回归训练输出层就足够了[1,8]。在本文中,我们使用单个非线性节点(如[9]中)提供了储层协议的设计。尽管最近的作品已通过光学频率梳子的频率组件成功实现了储层和神经形态的组合[10-12],但我们在这里利用了时间特征,即脉冲基础,光频率梳子作为储层的节点。此外,使用相干性同伴检测,因此可以在场的相分量中编码信息,而不是其强度或弹性。我们表明,尽管有少量的节点和低可线性的节点,但我们的协议具有良好的性能,同时显示非线性记忆和预测可供使。我们的系统建立在可以使用光脉冲来构建尖峰储层的概念上[13,14],并且信息注入的相位编码可以在光子储层计算机中获得更好的性能[15,16]。基于光学的计算[17]可能能够给予对电子设备的速度或能源效率。
在2022年,2023年和2024年,我们的家禽,后院羊群和野鸟。在过去三年中,所有大洲的HPAI爆发也有报道。在2022年,有四次检测,在2023年,新泽西州的家禽中有一个发现HPAI。所有家禽所有者都需要在家禽中寻找疾病的迹象,并使用良好的生物安全习惯来保护鸟类。家禽中HPAI的迹象包括猝死;呼吸道症状,例如咳嗽,打喷嚏和鼻腔排出;眼睛肿胀;呼吸张开;梳子/蜡的变暗;柄或脚发红;减少鸡蛋的产量;和嗜睡。NJDA的鸟类流感网站有更多有关该疾病,NJDA规则和生物安全性的信息:https://wwwww.nj.gov/agriculture/divisions/ah/diseases/avian_influenza.influenza.html
对于给定的n -vertex dag g =(v,e),带有透射率关闭的tc(g),链是tc(g)中的一个定向路径,而抗抗小节是TC(g)中的独立集。最大k-抗问题问题要求计算传递闭合的最大k色子图。相关的最大h-链问题要求计算最大总长度的H脱节链(即TC(G)中的集团。著名的Greene-Kleitman(GK)定理[J.梳子。理论,1976年]证明了这两个问题之间的(组合)连接。在这项工作中,我们将GK定理所隐含的组合特性转化为及时的覆盖算法。与先前的结果相反,我们的算法直接应用于g上,并且不需要其及其传递闭合的先例。让αk(g)为可以被k敌生覆盖的最大顶点数量。我们显示: