使用生物材料(细胞,组织和器官)制造活机是发育生物学和现代生物医学的挑战之一。再生潜力和免疫自卫机制的约束限制了该领域的进步。在这里,我们提出了与新的新兴参考物种的自我识别和祖先神经免疫体系结构有关的意外特征 - cenophores或梳子果冻。这些是最早生存的后代谱系的后代,具有独特的组织,器官和独立的动物特征的独立起源,例如神经元,肌肉,中胚层和穿透。因此,与双遗嘱人相比,c养家会趋于发展的复杂组织。然而,它们的神经和免疫系统可能在功能上耦合,从而实现了混合神经系统甚至整个动物的设计和实验构造。本报告说明了使用CTENOPHORES作为生物工程模型来建立嵌合动物和神经机器人的令人印象深刻的机会。来自三种c型物种(Bolinopsis,mnemiopsis和pleurobrachia)获得的神经动物和嵌合动物能够自主并生存数天。总的来说,生物多样性,细胞生物学和神经科学的统一为实验合成生物学打开了前所未有的机会。
专业活动和分支机构•副编辑,OSA/IEEE Lightwave Technology杂志(2014- 2020年)。•主席(2018,2023),技术计划委员会(TPC)的成员(2015-17,2021–24),光纤通信会议(OFC)。•组织者,研讨会“用于量子通信和计算的光子集成电路”和“数据中心,超出标准和电信网络的宽带光学放大器”,OFC 2024。•组织者,研讨会“量子信息和光学通信网络:新兴研究领域,挑战和机遇”,OFC2023。•组织者,OFC 2017上通信频率梳子的研讨会。•教练,光学放大器的简短课程,2017年,2018年,2019年,2020年,2021年,2022年,2023年,2024年。•TPC成员,光子网络和设备会议,OSA高级光子学大会2019 - 23年。•主席(2016-17),成员(2005-07和2013-15)的Lasers and Electro-Optics会议(CLEO)的Lightwave Communications and Networks of TPC的成员(2005-07和2013-15)。•组织者,在Cleo 2016上与相关放大器的光学信号处理研讨会。•联合主席,IEEE夏季非线性信号处理的主题会议(2014,2015)。•TPC成员(非线性频率产生和转换),Spie Photonics West,2014 - 2019年。•TPC成员,《光学 /激光科学》的前沿2016 - 2017年。
在本文中,我们在超薄的磁合金和多层上,在不透明的SI底物上应用桌面,超快,高谐波生成(HHG)来测量元素特异性铁磁共振(FMR)。我们证明了连续的波带宽高达62 GHz,并承诺将其扩展到100 GHz或更高。该实验室规模的仪器使用超快,极端粉状物(EUV)的光检测FMR,光子能量跨越了最相关的杂志元素的M-边缘。射频频率梳子发生器用于产生微波激发,该微波激发本质上同步与EUV脉冲,其正时抖动为1.1 ps或更高。我们应用该系统来测量多层系统以及Ni-FE和Co-FE合金中的动力学。由于该仪器以反射模式运行,因此它是测量和成像磁态动力学和主动设备在桌面上任意基板上的自旋传输的里程碑。较高的带宽还可以测量具有高磁各向异性的材料,以及纳米结构或纳米电视中的铁磁体,抗铁磁铁和短波长(高波形)自旋波。此外,EUV的相干性和短波长将能够使用动态纳米级无透镜成像技术(例如相干差异成像,Ptychography和全息图)扩展这些研究。
常规激光器通常支持良好的模式梳子。将许多谐振器耦合在一起形成较大的复杂腔,可以设计模式的空间和光谱分布,以实现敏感和可控制的片上光源。网络激光器由染料掺杂聚合物互连的波导形成,尽管与增益漂白具有高度敏感和可定制的激光光谱,但具有随机激光的巨大潜力。此处介绍了片上半导体网络激光器,并通过将键入的INP结合键入粘合到SIO 2∕Si Wafer上,作为可重现,稳定且可设计的随机激光器,具有丰富的多态光谱和较低的室温和室温较低的室温。阈值低至60°JCM -2脉冲-1。在实验和数字上进一步显示,网络密度直接影响模式空间分布,并且在大型密集网络中仅在10-20个连接的链路上将激光模式定位在空间上。INP网络激光器也稳定以泵送照明,并对泵图案中的小变化敏感。这些研究为在强大的半导体平台中量身定制的随机激光器的未来设计奠定了基础,对感应,信号处理,密码和机器学习产生了影响。
我们很高兴欢迎您参加第13届高级激光和光子源会议(阿尔卑斯山2024年)。阿尔卑斯山会议涵盖了与激光和光子来源有关的科学技术,涵盖了基本研究和工业应用。被广泛认可的是,特殊光源的发展对于推进新的科学发现和应用至关重要。在阿尔卑斯山会议上,参与者有宝贵的机会来交换有关最新技术进步和潜在新应用的想法和信息。这种交流在过去的三年中一直在维持会议的上诉。阿尔卑斯山会议是作为光学与光子学国际大会(OPIC 2024)的一部分组织的,该国际会议由13个与光学相关的科学会议组成。在第13阿尔卑斯山中,我们将有210多个出色的演讲,以涵盖该科学领域的最新高级演讲,其中包括36次受邀演讲。所包括的场是新型的光学材料,高平均功率激光器,高峰值激光器,新颖的固态,纤维,二极管激光器,较短的波长光源,Terahertz设备,新型光学设备,光学频率梳子,量子量,量子光学器件及其应用。在Covid-19限制放松后,我们计划以面对面的格式组织会议。我们预计在第13届阿尔卑斯山会议上为所有参与者举行富有成果的讨论。,您受到邀请加入我们,并在阿尔卑斯山会议上享受您的时光。
这项研究调查了(1)镜子或(2)主笔中的镜子和声音播放(即播放)是否可以减轻社会孤立的成年家养鸡的压力。三十只成年鸡参加了这项研究,在一个竞技场中连续三天进行了三分钟的社会隔离会议。每个鸡肉以半随机顺序暴露于每天的三个条件:(1)镜像,(2)播放和(3)控制。测试的视频记录是与压力相关的行为进行编码的,包括压力行为(即压力汇总和逃脱行为),警惕,喂养和探索。加上盟友,使用热成像来测量眼睛和梳子的表面温度。社会隔离引起了轻度的压力反应,这是通过降低的表面眼和梳理温度以及压力和警惕行为的表现所证明的。背部和镜子条件似乎都减少了压力行为,尽管镜子的效果在统计学上并不显着。播放可能模拟了一组平静的种类。警惕行为仍然不受影响。这些发现表明,在较小的镜子上播放可能会减轻社会孤立的成年鸡的某些与压力相关的行为。由于个体变异很高,未来的研究应探讨压力反应中个体差异的作用,以及反镜和播放的重复暴露以及其他环境变量的长期影响。
多细胞动物的摘要需要polycomb组蛋白的表观遗传抑制。后者在多种亚基X es中组装,其中两种,poly comb r ePressiv e comple x 1(pr c1)和poly comb r e:re atressiv e comple x 2(prc2),起作用,以抑制k e y de v e v elopmental基因。ho w pr c1和pr c2识别特定基因仍然是一个悬而未决的问题。在这里,我们报告了数百个DNA元素的鉴定,这些DNA元素将规范PRC1绑定到人类发育基因。我们使用该术语系列来描述在某些基因组部位在某些基因组部位显着存在的过程,尽管该复合物不太可能直接与DNA相互作用。详细的分析表明,与PRC1束缚相关的序列特征与F a v我们的PR C2结合的序列特征不同。t hrought the Genome,两种序列的特征是不同比例混合的,以产生一系列的DNA元素,这些元素的范围从主要是prc1或prc2到能够束缚这两种复合物的元素。新兴图片类似于果蝇的多梳子响应元件(PRES)对polycomb络合物的范式靶向,但可塑性是较高的。
光频率梳(OFC)参与了大量应用,例如计量,电信或光谱。在过去的几年中,已经探索了不同的技术。使用电气调制器(EOM),可以生成完全可调的OFC,该OFC通过应用的电气射频(RF)信号的频率设置了光学重复速率。为了实现芯片OFC发电机,Silicon Photonics是一项非常合适的技术,受益于大规模制造设施,并且有可能将电子设备与EOM整合在一起。但是,重复速率低于10 GHz的OFC可能具有挑战性,因为此类间距小于基于光栅的光谱分析仪的典型分辨率。为了克服这个问题,使用了基于异差检测技术的两种替代解决方案来对电气RF域上的OFC进行成像。第一种技术包括在调制器上同时应用两个频率,并观察结果的两个梳子之间的跳动。另一种方法是观察OFC和输入激光器之间的跳动,一旦该输入激光器的频率通过Acousto-Oc-Oc-Octic调制器从OFC的中心移动。基于两种测量技术,已观察到包含超过10条线的OFC,重复速率从100 MHz到15 GHz。它们是使用基于4毫米的硅耗尽耗尽的手动马赫 - Zehnder调制器(MZM)生成的,其波长为1550 nm。
摘要:薄膜硅锂(TFLN)光子学的最新进展导致了新一代的高性能电磁设备,包括调节器,频率梳子和微波炉到光传感器。然而,依赖于全光非线性的TFLN基于TFLN的设备受到了准阶段匹配(QPM)的敏感性的限制,该设备通过铁电极通过制造公差实现。在这里,我们提出了一个可扩展的制造工艺,旨在改善TFLN中光频率混合器的波长 - 准确性。与常规的极前蚀刻方法相反,我们首先定义了TFLN中的波导,然后执行铁电孔。此序列允许在波导定义之前和之后进行精确的计量学,以完全捕获几何缺陷。系统误差也可以通过测量设备的子集进行校准,以填充QPM设计,以在晶圆上剩余的设备。使用这种方法,我们制造了大量的第二次谐波生成设备,旨在生成737 nm的光,其中73%的靶标在目标波长的5 nm之内。此外,我们还通过覆层沉积展示了设备的热点调整和修剪,前者将约96%的测试设备带到了目标波长。我们的技术使集成量子频转换器,光子对源和光学参数放大器的快速增长,从而促进基于TFLN的非线性频率混合器集成到更复杂和功能性光子系统中。
量子计算机需要误差校正以实现量子优势。他们还需要校准大量参数,以正确操作Qubits,这可能只有53 QUBITS的Google Sycamore需要几个小时。扩展量子计算需要快速,可扩展和屈曲反馈以实现量子误差校正(QEC)和加速校准。QEC和校准都需要电子设备,以测量,计算和应用最低潜伏期的反馈。使用当今的电子设备必须扩展到数千个Qubits。FPGA是理想的选择,因为它们可以重新编程以满足不同的实验需求,同时达到了非常低的反馈延迟。典型的量子操作实验(图1)涉及在室温下通过数字转换器(DAC)(DACS)和对数字转换器(ADCS)的模拟转换器(ADC)的FPGA网络。用于自旋Qubits,控制信号由两种类型组成。首先,基于纳秒坡道的准静态控制,以调整Qubits的潜在井和耦合以改变其状态。其次,通过I/Q调制控制的Ra-dio频率脉冲,用于测量或基于共振的控制。数字混合用于实现更复杂的控制方案和脉搏工程。完整的数字发电提高了灵活性并减少了噪声源。我们使用直接生成的坡道和频率梳子提出了可扩展的,复杂的信号发生器(CSG),以减少