摘要 - 我们介绍Lista(LiDAR时空时空肛门),这是一个系统,可使用Multi-Mession Slam检测概率对象级变化。许多应用程序需要这样的系统,包括施工,机器人导航,长期自治和环境监控。我们专注于在数周或几个月内添加,减去或更改对象的半静态场景。我们的系统结合了使用学识渊博的描述符来跟踪一组开放的对象的多态度激光雷达大满贯,体积差异,对象实例描述和对应分组。任务之间的对象对应关系是通过聚类对象的描述符来确定的。我们使用在模拟环境中收集的数据集和使用安装在四倍的机器人上的LIDAR系统捕获的现实世界数据集来证明我们的方法,该数据集捕获了一个固定,半静态和动态对象的工业设施。与现有方法相比,我们的方法在检测半静态环境的变化方面表现出了卓越的性能。
网络传感器系统中优化分布式检测的问题涉及许多设计方面,包括平衡漏检和误报概率以及通过适当的网络内信息融合管理通信资源。此外,还必须进行许多权衡,例如信息融合和传感器控制的计算要求与信息交换的通信要求之间的权衡。因此,最好通过共同考虑设计方面和权衡对整体系统性能的影响来做出整体系统设计决策。本文讨论了网络内融合和相关的网络算法,这些算法可提高多静态声纳应用的检测性能和能源效率。这是通过在场外传输之前交换和融合声纳浮标之间的联系来实现的。网络内融合利用成本较低的浮标间通信进行大部分数据通信,并通过仅报告具有足够相关性的多个浮标的检测来减少随机不相关的误报。场外接触传输的减少允许每个浮标的信号过量阈值降低,从而增加检测概率。我们通过分析和高保真声纳模拟证明了分布式网络融合的有效性。
Excelitas Technologies 的 C30902EH 系列雪崩光电二极管采用双扩散“穿透”结构制造而成。此结构在 400 nm 和 1000 nm 之间提供高响应度,并在所有波长下提供极快的上升和下降时间。器件的响应度与高达约 800 MHz 的调制频率无关。C30902SH 系列硅 SPAD 提供极低的噪声和大暗电流,可实现非常高性能的数据和距离测量。它们特别适合超低光照水平检测应用(例如单光子计数和量子通信),适用于光功率小于 1 pW 的情况。C30902SH 可在线性模式(V OP < V BD )下使用,典型增益为 250 或更高,或在“盖革”模式(V OP > V BD )下使用,具有极低且稳定的暗计数率和脉冲后比。在此模式下,无需放大器,单光子检测概率最高可达约 50%。为了获得更高性能,这些高性能 SPAD 可配备单级或双级热电冷却器。
网络传感器系统中的分布式检测优化问题涉及许多设计方面,包括平衡漏检和误报概率以及通过适当的网络内信息融合管理通信资源。此外,还必须进行许多权衡,例如信息融合和传感器控制的计算要求与信息交换的通信要求之间的权衡。因此,最好通过共同考虑设计方面和权衡对整体系统性能的影响来做出整体系统设计决策。本文讨论了网络内融合和相关的网络算法,以提高多静态声纳应用的检测性能和能源效率。这是通过在传输到场外之前交换和融合声纳浮标之间的联系来实现的。网络内融合利用成本较低的浮标间通信进行大部分数据通信,并通过仅报告具有足够相关性的多个浮标的检测结果来减少随机不相关的误报。场外接触传输的减少允许每个浮标具有较低的信号过量阈值,从而增加检测概率。我们通过分析和高保真声纳模拟证明了分布式网络内融合的有效性。
最近的研究表明,在不久的将来,也许可以通过桌面实验探测到引力诱导的纠缠。然而,目前还没有针对此类实验的彻底开发的模型,其中纠缠粒子在更根本上被视为相对论量子场的激发,并使用场可观测量的期望值来建模测量值。在这里,我们提出了一个思想实验,其中两个粒子最初在一个共同的三维 (3D) 谐波陷阱内以相干态叠加的形式准备。然后,粒子通过它们相互的引力相互作用产生纠缠,这可以通过粒子位置检测概率来探测。本研究对该系统的引力诱导纠缠进行了非相对论量子力学分析,我们将其称为“引力谐波”,因为它与氦原子中近似电子相互作用的谐波模型相似;纠缠在操作上是通过物质波干涉可见性确定的。本研究为后续研究奠定了基础,后续研究使用量子场论对该系统进行建模,通过相对论修正进一步深入了解引力诱导纠缠的量子性质,并提出量化纠缠的操作程序。
方法 1005.8 稳态寿命 1. 目的。稳态寿命试验的目的是证明在较长时间内处于指定条件下的设备的质量或可靠性。在额定工作条件下进行的寿命试验应进行足够长的试验期,以确保结果不是早期故障或“早期死亡”的特征,并且在寿命试验结束前应定期观察结果,以指示故障率随时间的任何显著变化。在较短间隔或较低应力下获得有效结果需要加速测试条件或足够大的样本量,以提供合理的样本故障检测概率,该概率与样本所抽取批次中潜在故障的分布相对应。下面 3 中提供的测试条件旨在反映这些考虑因素。当采用该测试来评估设备的一般能力或进行设备鉴定测试以支持需要高可靠性的未来设备应用时,应选择测试条件以表示设备在电气输入、负载和偏置方面的最大操作或测试(参见测试条件 F)额定值以及相应的最大操作或测试温度或其他指定环境。2. 设备。合适的插座或其他安装
本研究展示了一种使用移动设备进行基于阵列的自由空间光 (FSO) 通信的机器学习 (ML) 方法。现代作战人员需要非射频 (RF) 通信方法来消除与 RF 通信相关的风险,例如检测、窃听和干扰。FSO 通信有望实现巨大的吞吐量,并具有其他优势,例如低拦截/检测概率和抗干扰性。然而,大气条件会通过在信道上引入衰落和噪声,从而显著降低实现的性能。为了提高信道弹性和吞吐量,我们在发射器处使用激光阵列采用空间代码,并在信道字母表上训练多个 ML 模型以在接收器处提供高效解码。我们在训练过程中比较了单次检测 (SSD) MobileNet 模型与 You-Only-Look-Once 模型的性能,并使用训练后的 SSD MobileNet 模型演示了通过概念验证系统进行的数据传输。我们详细介绍了概念验证的硬件和软件实现,它使用手持移动设备和一系列低成本、低功耗激光器。未来的实验计划将结合前向误差校正和在现实条件下进行更远距离的测试。
网络传感器系统中优化分布式检测的问题涉及许多设计方面,包括平衡漏检和误报概率以及通过适当的网络内信息融合管理通信资源。此外,还必须进行许多权衡,例如信息融合和传感器控制的计算要求与信息交换的通信要求之间的权衡。因此,最好通过共同考虑设计方面和权衡对整体系统性能的影响来做出整体系统设计决策。本文讨论了网络内融合和相关的网络算法,这些算法可提高多静态声纳应用的检测性能和能源效率。这是通过在场外传输之前交换和融合声纳浮标之间的联系来实现的。网络内融合利用成本较低的浮标间通信进行大部分数据通信,并通过仅报告具有足够相关性的多个浮标的检测来减少随机不相关的误报。场外接触传输的减少允许每个浮标的信号过量阈值降低,从而增加检测概率。我们通过分析和高保真声纳模拟证明了分布式网络融合的有效性。
历史上首次成功开发并进行了现场测试,一种科学合理且实用的方法可以客观地确定陆地环境中对搜索和救援 (SAR) 重要物体的检测概率。使用志愿搜索者收集数据并使用简化的分析技术进行分析,所有成本都非常低。这项工作为解决搜索规划和评估问题打开了大门,这些问题在陆地 SAR 社区中已经激烈争论了近 30 年,但从未得到解决。搜索本质上是一个概率过程,无法保证成功或失败。搜索仍然是一项重大挑战,尤其是在生命受到威胁时。但是,使用正确的工具和概念进行精心计划的搜索更有可能成功,而且同样重要的是,当生命受到威胁时,成功会更快。规划搜索包括评估所有可用信息,然后,由于通常不可能一次性在所有地方进行彻底搜索,因此需要决定如何最好地利用可用的、通常有限的搜索资源。由于“所有可用信息”还包括任何已完成的未成功搜索,因此需要适当核算一般搜索区域的各个部分或子部分的搜索效果。这将成为规划失踪人员后续搜索活动的输入。对于搜索前规划和搜索后评估,搜索规划人员必须能够客观地估计在给定资源和努力程度下在给定搜索区域部分中发现给定物体的概率。检测概率 (POD) 取决于努力程度、部分大小以及检测搜索对象的难易程度。检测的难易程度又取决于所使用的传感器(通常是肉眼)、所寻找物体的性质(大小、颜色等)以及搜索时和搜索地点的环境(地形、植被、天气等)。虽然陆地搜索的规划者通常知道他们在搜索什么、他们有哪些可用资源以及资源将要或已经发送的部分的大小和环境特征,但他们无法量化搜索者在检测搜索对象时的难易程度。有效扫描宽度可以被视为一种将所有因素都考虑在内的“可检测性指数”。这使得他们没有客观的方法来估计 POD,并在过去 30 年中有效地阻碍了将陆地 SAR 搜索规划置于更科学的基础上的尝试。规划人员被迫要么在没有可靠数据的情况下做出主观的 POD 估计,要么依靠搜索者自己的更主观的估计。量化“可探测性”的最简单指标是一个称为“有效扫描(或搜索)宽度” (ESW) 的值。这个概念将影响给定搜索情况下检测的所有因素(传感器、环境、搜索对象)的综合影响降低为一个表征该情况下搜索对象“可探测性”的单个数字。它不应被视为传感器之间的“宽度”或间距。不幸的是,有效扫描宽度无法直接测量。有必要进行检测实验并从中减少数据。该项目的目标是:
使用主动声纳浮标场检测和跟踪水下目标最近引起了广泛的研究兴趣 [1],[2],[3],[4],[5],[6]。这个问题涉及确定声纳浮标场覆盖区域内的目标数量并跟踪它们的位置。通过从单一源(声纳浮标)传输信号(“ping”)并收集附近多个接收器的反射测量值来获得目标的测量值。由于水下环境中的检测概率低,以及可用的位置测量值(通常采用极坐标)与目标状态之间的非线性关系,因此出现了困难。在 [5] 中,提出了一种 CPHDF 的迭代校正版本的高斯混合近似用于目标检测和跟踪,并基于该算法描述了一种发射机调度算法。还提出了一种使用折扣因子来考虑电池寿命约束的基本技术。本文主要关注多静态声纳浮标环境中的多目标跟踪问题。基数化概率假设密度滤波器 (CPHDF) [7] 已在多静态声纳浮标系统中用于跟踪 [1]、[3]、[5]。CPHDF 是在随机有限集 (RFS) 框架中开发的,它通过其一阶矩和基数或目标数分布来近似完整的多目标后验密度