在最近的研究中,已对开放式摄制对象检测任务进行了大量关注,旨在概括训练期间标记的类别的有限级别,并检测推理时任意类别名称所描述的对象。与常规对象检测相比,打开的词汇对象检测在很大程度上扩展了对象检测类别。但是,它依赖于计算图像区域与一组具有验证视觉和语言模型的任意类别名称之间的相似性。这意味着,尽管具有开放式的性质,但该任务仍然需要在推理阶段的预定义对象类别。这提出了一个问题:如果我们在推理中对对象类别没有确切的了解,该怎么办?在本文中,我们称之为新的设置为生成性开放式对象检测,这是一个更普遍和实际的问题。为了解决它,我们将对象检测形式为生成问题,并提出了一个名为generateu的简单框架,该框架可以检测密集的对象并以自由形式的方式生成其名称。尤其是,我们采用可变形的DETR作为区域促成生成器,其语言模型将视觉区域转换为对象名称。为了评估自由形式的对象划分任务,我们介绍了一种评估方法,旨在定量测量生成量的性能。广泛的实验表明我们的生成量强烈的零射击性能。代码可在以下网址获得:https://github.com/foundationvision/generateu。例如,在LVIS数据集上,我们的GenerateU在推理过程中属于类别名称,即类别名称无法看到类别名称,即使类别名称看不见类别名称,我们的GenerateU也可以与开放式唱机对象检测方法GLIP相当。
黑色素瘤是一种最可怕的皮肤癌,死亡率很高,最初是通过临床筛查、皮肤镜分析、活检和组织病理学检查进行目视诊断的。如果诊断和早期治疗延误,就会变得很危险。图像处理技术的最新发展有助于有效地检测黑色素瘤,因为由于病变的细粒度变化,检测黑色素瘤是一项艰巨的工作。本文研究了一种使用粒子群优化人工神经网络分析病变不规则性的新分类程序。在本研究论文中,提取病变的颜色特征并使用 PSO-ANN 分类器进行分类。通过标记假阳性率和真阳性率获得的接收者操作特性在分析计算机辅助诊断系统的诊断潜力方面起着至关重要的作用。应用于 ISIC 数据库的分类技术表明曲线下面积为 0.96853,特异性为 90.0%,灵敏度为 94.07%,准确率为 93.04%。
1。Introduction................................................................................................. 1
勒索软件攻击的威胁不断升级,这突显了有效检测和预防策略的迫切需求。传统的安全措施虽然有价值,但通常在识别和缓解复杂的勒索软件威胁方面差不多。本文探讨了行为分析与勒索软件防御机制的整合,提出了从基于签名的基于行为的检测方法的范式转变。通过分析用户和系统行为的模式,行为分析可以为勒索软件活动的微妙指标提供更深入的见解。本研究研究了各种行为分析技术,包括异常检测,机器学习算法和启发式方法,以及它们在识别勒索软件早期迹象方面的功效。它还解决了与行为分析相关的挑战,例如高误报率以及对不断发展威胁的持续适应的需求。通过对当前方法论和案例研究的综述,本文强调了行为分析的潜力,以增强勒索软件检测和预防,从而提供了更具动态和弹性的网络安全方法。
●在Milano-Bicocca和Ciemat中测试的HD-XA PDE●相同的sipms(在CIEMAT和MIB之间交换),但不同的WLS栏●这些四个配置在Protodune-HD NP04中同样表示,并且在数字和位置W.R.T.中平衡。横梁,进行公平比较●跨言论校正
我保证,据我所知,我的论文不侵犯任何人的版权,也不违反任何专有权利,并且我的论文中包含的任何想法、技术、引用或来自他人作品的任何其他材料(无论是否已发表)均已根据标准引用惯例完全承认。此外,如果我所包含的受版权保护的材料超出了《印度版权法》所规定的公平使用范围,我保证我已获得版权所有者的书面许可,可以将此类材料纳入我的论文中,并将此类版权许可的副本附在我们的附录中。
7.1 Adoption Barriers........................................................................................................25 7.2 Future Research Paths.............................................................................................. 27 8.Conclusion........................................................................................................................30 Bibliography......................................................................................................................... 33 Plagiarism Statement...........................................................................................................36
摘要:人工智能(AI)严重影响了各个部门,突破了技术和重新定义过程的界限。本文研究了AI进步的三个关键领域:用于软件开发的GitHub Copilot,长期记忆(LSTM)网络检测假新闻以及AI对运输的更大影响。Github副副词是AI-Power Edsing Assistant,正在彻底改变开发人员编写代码的方式。LSTM,一种复发性神经网络(RNN)的形式,提供了一种有效的解决方案来检测错误信息。最后,AI通过自动驾驶车辆和交通管理对运输的贡献,展示了AI如何重塑运输领域的基础设施,安全性和效率。本文旨在全面了解这些技术的工作方式及其社会影响。
该项目由美国司法部妇女暴力问题办公室颁发的资助编号 15JOVW-21-GK-02240-MUMU 资助。本出版物/计划/展览中表达的观点、调查结果、结论和建议均为作者的观点,并不一定反映美国司法部的观点。
● 2022 年 8 月 16 日,第 391 例 COVID-19 相关死亡病例发生在关岛美国海军医院。患者是一名 94 岁的男性,没有疫苗接种记录,潜在健康状况不明,8 月 16 日检测呈阳性。● 2022 年 8 月 17 日,第 392 例 COVID-19 相关死亡病例发生在关岛纪念医院 (GMH)。患者是一名 57 岁的女性,部分接种了疫苗,有潜在健康状况,7 月 21 日检测呈阳性。● 2022 年 9 月 3 日,第 393 例 COVID-19 相关死亡病例发生在 GMH。患者是一名 70 岁的男性,完全接种了疫苗但未接种加强针,有潜在健康状况,8 月 20 日检测呈阳性。● 2022 年 9 月 4 日,第 394 例 COVID-19 相关死亡病例抵达 GMH 时被宣布死亡。患者是一名3 周大的男性,因潜在健康状况不明而不适合接种疫苗,9 月 4 日检测呈阳性。
