酒吧尾的戈德维特的两个亚种,它们在北半球的单独繁殖地繁殖,澳大利亚越冬1。Limosa Lapponica Baueri在阿拉斯加西部,西伯利亚东北部以及越过澳大利亚北部,澳大利亚和新西兰的越野繁殖。limosa l。 Menzbieri在西伯利亚北部和越过澳大利亚西北部和东南亚繁殖。这两个亚种都可能迁移到北领地(NT),但钢筋尾godwits的记录很少识别亚种,因为它们通常只能在飞行时才能区分。
叶形被认为是作物育种中最重要的农艺性状之一。然而,棉花叶片形态发生的分子基础仍然很大程度上未知。在这项研究中,通过使用叶片向上卷曲的天然棉花突变体 cu 进行遗传作图和分子研究,成功鉴定出致病基因 GHCU 是叶片扁平化的关键调控因子。使用 CRISPR 敲除棉花和烟草中的 GHCU 或其同源物会导致叶片形状异常。进一步发现,GHCU 促进 HD 蛋白 KNOTTED1-like (KNGH1) 从近轴区域到远轴区域的运输。GHCU 功能的丧失将 KNGH1 限制在近轴表皮区域,导致近轴边界的生长素反应水平低于远轴区域。生长素分布的这种空间不对称产生了 cu 突变体向上卷曲的叶片表型。通过单细胞 RNA 测序和时空转录组数据分析,证实生长素生物合成基因在近轴和远轴表皮细胞中不对称表达。总体而言,这些发现表明 GHCU 通过促进 KNGH1 的细胞间运输,从而影响生长素反应水平,在叶片扁平化的调控中起着至关重要的作用。
PrintRite™ DP 316 是一种浓缩的水性预处理剂,适用于棉和棉涤纶混纺面料上的水性颜料墨水数码印花。一旦使用,它就会提供不可见的效果,对原始织物手感的影响最小。以大约 20% 的固体含量(按重量计算)提供,使用前用去离子水稀释(通常为 4:1)。它是 PrintRite™ DP 306 的浓缩版(以 4.5% 的固体含量(按重量计算)提供即用型液体)。稀释后,PrintRite™ DP 316 可通过喷涂或浸轧应用于浅色棉、涤纶或棉涤纶混纺面料,随后使用水性颜料喷墨墨水进行宽幅、卷对卷、直接到纺织品的数码印花。PrintRite。用去离子水稀释后,最好在 1 周内使用。为了获得最佳性能,请联系您的客户经理或技术市场经理获取DP306/DP316/DP316A加工表。
致谢 本出版物的主要信息来源是 EPA 手册《城市综合害虫管理:商业施药者指南》(1992 年,E. Wood 和 L. Pinto,Dual and Associates,弗吉尼亚州阿灵顿)。有关田鼠、土拨鼠、棉尾兔、麝鼠和白尾鹿的信息来自内布拉斯加大学出版物《野生动物损害的预防和控制》(1994 年,S.E.Hygnstrom,R.M.Timm 和 G.E.Larson [eds.],合作推广服务,内布拉斯加州林肯,美国农业部 - 公共卫生部)。1 第 4 章中有关汉坦病毒的信息取自 CDC 网页“关于汉坦病毒的一切”,美国卫生和公众服务部疾病控制和预防中心国家传染病中心病毒和立克次体疾病科病原体科 [1999 年 3 月 26 日引用]。URL 为 http://www.cdc.gov/nci-dod/diseases/hanta/hps/index.htm。我们还感谢密歇根州农业部 (MDA) 昆虫和啮齿动物管理部项目经理 Mel Poplar、密歇根州立大学害虫管理主管 John Haslem 和密歇根州自然资源部 (MDNR) 许可专家 Jim Janson 的技术支持。在他们的帮助下,我们能够调整害虫管理信息,使其与密歇根州更加相关。
咸水滴灌是解决干旱地区淡水短缺问题的一个潜在解决方案。然而,长期使用会使土壤盐分积累并降低磷 (P) 的有效性。生物炭和秸秆改良剂已被证明可以减轻这些影响,但它们在调节长期咸水灌溉下参与磷转化的微生物基因方面的机制仍不清楚。本研究旨在评估生物炭和秸秆掺入对盐灌棉田土壤微生物群落结构和磷有效性的影响。基于 14 年的田间试验,开发了三种处理方法:仅咸水灌溉 (CK)、咸水灌溉加生物炭 (BC) 和咸水灌溉加秸秆 (ST)。结果表明,这两种改良剂都显著提高了土壤含水量、有机碳、总磷、有效磷和无机磷组分 (Ca 10 -P、Al-P、Fe-P 和 OP),同时降低了土壤电导率和 Ca 2 -P 和 Ca 8 -P 组分。生物炭增加了 Chloro flexi、Gemmatimonadetes 和 Verrucomicrobia 的相对丰度,而秸秆则促进了 Proteobacteria 和 Planctomycetota 的丰度。两种处理均降低了几种 P 矿化基因(例如 phoD、phoA)的丰度并增加了与 P 溶解相关的基因(例如 gcd)。相关性研究表明,微生物种群和 P 循环基因与土壤特性紧密相关,其中 Ca 2 -P 和 Al-P 是重要的介质。通常,在长期含盐灌溉下,生物炭和秸秆改良剂可降低土壤盐分,提高土壤 P 的有效性,降低磷循环相关微生物基因的表达并改善土壤特性。这些结果使它们成为可持续土壤管理的绝佳技术。
摘要:本文提出了一种增量反步滑模(IBS)控制器,用于无尾飞机的轨迹控制,该控制器具有未知干扰和模型不确定性。所提出的控制器基于无尾飞机的非线性动力学模型。提出了一种限制虚拟控制输入速率和幅度的稳定性增强器(SE)。稳定性增强器由两层组成。当虚拟控制输入接近边缘时,将激活第一层 SE 来修改轨迹跟踪误差;当虚拟控制输入超出边缘时,第二层 SE 将降低控制增益以确保虚拟控制输入尽快落在边缘内。在 SE 的帮助下,增量控制方法可以扩展到外环控制,而无需考虑内环系统的动态特性。此外,提出了一种状态导数自适应估计器,与 IBS 相结合,使控制器表现出良好的鲁棒性。最后,给出了两个仿真。第一次仿真表明系统对外部干扰和模型不确定性不敏感,第二次仿真证明了 SE 的有效性。
(gactachvgggtatctaatcc)和341F(cctacgggnggcwgcag)用于放大土壤封闭食物链系统中每个组件的V3-V4区域。Studies have shown that the V3-V4 region of the selected bacteria can reduce genomic heterogeneity and can be closer to the full-length comparison information than other variable regions(DONG-LEI S et al.,2013).The PCR amplification reaction consisted of 1 µL of 10 mM upstream and downstream primers (805 R primer with Barcode at the 5 ' end), 25 µL of Ex Taq酶,1 µL DNA模板和22 µL DDH2O形成50 µL×2反应系统。表4-1显示了特定的PCR扩增反应条件。放大后,通过DNA纯化和恢复试剂盒(Thermo Fisher)回收产物。确定纯化产物的浓度,并将每个样品与
。CC-BY-NC 4.0国际许可证的永久性。根据作者/资助人提供了预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2025年2月25日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.01.24.634822 doi:Biorxiv Preprint