以下文章着眼于影响EV电池设计的动力学,其中特定的重点放在从模块化到单元包(CTP)配置的过渡上。到目前为止,在采用CTP采用或摄取细胞到Chassis(CTC)设计方面,原始设备制造商(OEM)尚未有一个主要的趋势。一些OEM遵守传统的模块化体系结构,在包装中包含16或32个模块。相比之下,其他人正在远离模块化方法,通过减少组成模块的数量来吸引CTP。值得注意的是,来自中国的某些OEM设计最近完全接受了CTP。绘制模块化和CTP设计之间的比较揭示了CTP的当前密度大幅增加,这是增强整体EV性能的关键因素。在3个普遍的电池设计中 - 即棱柱形,小袋和圆柱形 - 棱镜细胞(主要在远东地区受到青睐)在袋子后面的落后于当前密度。此差异具有
摘要 本文从移动技术和无处不在的连接性的角度,探讨了时间地理学在旅游业中重新发挥的作用。本文提出了“物理数字化”的概念,以了解数字技术如何在物理空间中使用,以及物理和数字之间的相互作用如何重新配置游客的项目、路径、捆绑和约束。理论贡献建立在 15 次半结构化访谈的基础上。分析表明,能力、耦合和权限约束会受到数字设备的改变和调节。在物理数字化时空中,游客在数字信息的影响下在物理空间中定位自己;他们创建物理数字化路径并在站点之间移动,这是数字信息叠加到物理空间的结果。游客以目标为导向的流动产生了物理数字化项目,其中效率和优化逻辑降低了游客体验的界限性。游客的捆绑包是通过数字通信在物理度假棱镜内外创建的。
CVD Ceramics 的化学气相沉积 CVD 硫化锌 ® 是红外窗口、圆顶和光学元件的低成本替代品。硫化锌的断裂强度是硒化锌的两倍,而且硬度高,已成功用于许多需要机械抗恶劣环境的军事应用。Cleartran ® 是一种 CVD 硫化锌 ® 材料,通过后沉积热等静压工艺进行改性。该工艺从晶格中去除锌氢化物,使晶体结构正常化并净化材料,所有这些都有助于在可见光至远红外范围(0.35 -14 微米)内实现单晶般的透射率。由于其在宽传输范围内的吸收和散射率低,光学质量高,它特别适合需要单个孔径用于多个波段光束路径的多光谱应用。 CVD Zinc Sulfide ® 和 Cleartran ® 具有化学惰性、不吸湿、高纯度、理论上致密且易于加工。可根据您的规格定制直径、矩形、CNC 异形毛坯、生成的镜片毛坯、棱镜和近净形圆顶。
(D) 使用适当的工具,如电流表、天平、弹道车或同等设备、电池、卡尺、摄氏温度计、消耗性化学品、碰撞设备、计算机和建模软件、恒速车、数据采集探头和软件、带电源的放电管(H、He、Ne、Ar)、动力学和力演示设备、验电器、静电发生器、静电套件、摩擦块、绘图技术、手持式视觉分光镜、加热板、铁屑、激光笔、灯泡、宏量计、磁铁、磁罗盘、质量装置、公制尺、米尺、模型和图表、运动探测器、万用表、光学台、光学套件、光学透镜、摆锤、光电门、平面镜、偏光膜、棱镜、量角器、电阻器、带波发生器的波纹槽、绳子或细绳、科学计算器、简单机械、弹簧、弹簧、弹簧秤、标准实验室玻璃器皿,秒表、开关、音叉、计时装置、轨迹仪、电压表、波动绳、电线或其他能产生相同结果的设备和材料;
摘要。目前,创业和专业活动正在向数字化商业、管理、经济和技术转型,这些转型可以通过四个新技术领域的棱镜来观察:人工智能、区块链、云技术和数据分析。因此,我们将使用多学科方法来展示数字工具如何影响业务流程、管理和经济的所有领域。研究目的:确定人工智能在法律和社会数字化转型背景下建立商业、管理、经济和技术转型、商业和专业活动的有效模型中的作用和重要性。方法:这项工作的方法论基础是法律现象认知的一般科学方法,例如综合法、类比法、形式逻辑等,以及研究创业和专业活动领域人工智能类别的具体科学方法。成果与创新:要实现使用人工智能的目标,可以描述如下:第一步是使用大数据,第二步是应用分析,第三步是预测。人工智能用于收集和存储数据,以便进行分析和进一步预测。IT、营销、财务、会计和销售领域的公司正在使用人工智能来提高竞争力和效率。
这里提出的反思工作旨在展示如何将这种通过流动实现循环经济的方法转化为一个结构模型,该模型综合了不同的文献资料,其中我们可以发现对循环供应链的呼吁[1],价值金字塔(根据主要的7R)[3],以及向10R的演变[2]。该模型旨在展示允许SCC成为“高循环性”运营核心的主要结构,通过尽可能确保在使用过程中最大限度地保存材料的价值,通过追求提高产品和材料使用效率的目标,然后尽可能地限制在“使用结束时”的价值损失,无论考虑的产品和材料及其状态如何。首先,我们将努力对循环供应链 (SCC) 提供一个共识和科学的定义,然后描述包括 REP 部门在内的再处理部门的 SCC 需求。然后,第二步,将通过阿赫特伯格金字塔 [3] 的初始棱镜来解决流动的循环性问题,但尽量详尽地考虑 10R 命令。目标是在 REP 部门和 SCC 解决方案的结构之间建立联系,以便在转型中取得最佳成功
我们介绍了一种用于地球观测微型卫星平台的空间高光谱成像仪 (HSI) 的光学设计。空间高光谱成像在农业、水管理、环境监测、矿物学和遥感等领域具有许多重要应用。设计了一种 HSI 系统,该系统能够实现地面采样距离 (GSD) 小于 15 m、扫描幅宽大于 15 km、光谱分辨率小于 10 nm 并在低地球轨道 (LEO) 上运行。系统尺寸限制为小于 0.125 𝑚 3 的体积。选择商用、冷却的 HgCdTe 型成像传感器来为设计的成像仪操作 400 – 2500 nm 的光谱。HSI 光学设计包括离轴三镜消像散 (TMA) 型望远镜和改进的 Offner 型光谱仪。使用改进的 Offner 型光谱仪设计,以两个 Féry 棱镜作为衍射元件。整体HSI系统设计符合本文描述的性能目标。
CVD Ceramics 的化学气相沉积 CVD 硫化锌 ® 是红外窗口、圆顶和光学元件的低成本替代品。硫化锌的断裂强度是硒化锌的两倍,而且硬度高,已成功用于许多需要机械抗恶劣环境的军事应用。Cleartran ® 是一种 CVD 硫化锌 ® 材料,通过后沉积热等静压工艺进行改性。该工艺从晶格中去除氢化锌,使晶体结构正常化并净化材料,所有这些都有助于在可见光至远红外范围(0.35 -14 微米)内实现单晶般的透射率。由于其在宽传输范围内的低吸收和散射以及高光学质量,它特别适合需要单个孔径用于多个波段光束路径的多光谱应用。 CVD Zinc Sulfide ® 和 Cleartran ® 具有化学惰性、不吸湿、高纯度、理论上致密且易于加工。可根据您的规格定制直径、矩形、CNC 异形毛坯、生成的镜片毛坯、棱镜和近净形圆顶。
摘要:目的:本项科学研究旨在对科学和文化话语中形成的人工智能的积极和消极特征提供哲学解释。需要注意的是,研究目标并不集中在通常的分析上,以确定人工智能潜力的优缺点。对人工智能现状的哲学解释是在这个潜在的全球社会文化现象的优势中寻找其消极方面,在劣势中寻找其积极方面。方法:本研究采用了一般的科学、文化和哲学方法。一个明显的特征是哲学和方法论的逆转原则——传统知识研究活动与创新人工智能之间的反向(在某些情况下是反比)相互作用。结果:根据研究结果,提出了一种通过辩证对立和协同作用的棱镜来评估人工智能优缺点的格式。人工智能的科学哲学分析模型由价值论、认识论、方法论和本体论特征构成。科学创新性:人工智能工具与新人文范式创新社会观念的关联性是一个有前途的研究领域。在现代科学的世界图景中,人工智能的地位处于世界观验证阶段,因此这种创新的前景
摘要 哺乳动物的智能行为和认知功能依赖于由多种兴奋性和抑制性细胞组成的皮质微电路,这些微电路形成跨越六层的森林状复合体。对皮质微电路的机制理解需要操纵和监测多个层及其之间的相互作用。然而,现有技术仅限于同时监测和刺激不同深度而不损害大量皮质组织。在这里,我们提出了一种相对简单且通用的方法,用于同时将光传送到任意两个皮质层。该方法使用一个微型光学探头,该探头由安装在单个轴上的两个微棱镜组成。我们通过三组实验展示了探头的多功能性:第一,通过光遗传学独立操纵两个不同的皮质层;第二,刺激一层同时监测另一层的活动;第三,在清醒小鼠中同时监测分布在两个不同皮质层中的丘脑轴突的活动。该探针设计简单、用途广泛、体积小、成本低,可广泛应用于解决重要的生物学问题。