直接在记录部位放大、转换和处理神经过程的微小离子电位波动的能力对于提高神经植入物的性能至关重要。有机前端模拟电子器件是此应用的理想选择,由于其具有类似组织的机械特性,因此可以实现微创放大器。在这里,我们通过配对耗尽型和增强型 p 型和 n 型有机电化学晶体管 (OECT) 来展示完全有机互补电路。通过精确的几何调整和垂直设备架构,我们实现了重叠的输出特性并将它们集成到具有单个神经元尺寸(20 微米)的放大器中。具有 p 和 n-OECT 组合的放大器可实现电压对电压放大,增益为 > 30 分贝。我们还利用具有匹配特性的耗尽型和增强型 p-OECT 来展示具有高共模抑制率(> 60 分贝)的差分记录能力。将基于 OECT 的前端放大器集成到灵活的柄部外形中,可以实现小鼠皮层中单神经元的记录并进行现场过滤和放大。
智能植入物越来越多地用于治疗各种疾病,跟踪患者状态并恢复组织和器官功能。这些设备支持内部器官,主动刺激神经并监测基本功能。通过连续监测或刺激,可以改善患者观察质量和随后的治疗方法。另外,使用可生物降解和完全排泄的植入物材料消除了手术清除的需求,提供了患者友好的解决方案。在这篇评论中,我们对智能植入物进行了分类,并讨论了创建中使用的最新原型,材料和技术。我们的重点在于探索医疗设备,而不是替换器官或组织并通过传感器和电子电路结合新功能。我们还研究了创建保留所有关键功能的可植入设备的优势,机遇和挑战。通过深入概述当前最新的智能植入物,我们阐明了持续的问题和局限性,同时讨论了这些设备所使用的材料未来进步的潜在途径。
摘要 不锈钢、钛合金、钴铬合金等金属材料是应用最为广泛的骨科植入物,但在临床应用中仍存在金属与骨的力学不匹配、炎症、二次手术等问题。镁及其合金作为新一代医用金属材料,由于其优异的生物降解性而备受关注。可生物降解的镁基金属具有良好的力学性能和成骨性能,有望成为治疗棘手骨科疾病的植入材料。但腐蚀速度快仍是制约其临床应用的主要挑战之一,合金化和表面改性是控制镁合金腐蚀速度的有效方法。本文综述了可生物降解镁合金的力学性能、生物性能及其在临床应用中存在的问题,重点介绍了镁基金属在合金化和表面改性方面的最新进展,并介绍了镁基植入物在骨科的应用现状。
这些特点对于减轻临床负担和让患者快速康复至关重要。[5] 为了应对这些挑战,重要的是将植入物小型化,使其可通过导管或注射器诱导。[6] 为了插入最终需要大于输送通道的物体,应在输送过程中将其转变为更小更薄的状态。[7] 输送通道相对于输送物体的尺寸越窄,在选择材料和设计时就必须做出越多的妥协。将软材料和功能材料与小型化技术相结合在应对这一挑战方面取得了重大进展。[8] 特别是,具有响应外部刺激而发生特征性时间瞬态形态变化的形状记忆材料在整个输送过程中实现了高度的变形和形状恢复功能。[9] 采用光刻技术制造了 2D、形状记忆和微孔网状电极,装入注射器并注射入大脑。 [10] 在通过注射器注射的输送阶段,网片被压缩成准一维形状,随后松弛并扩展以恢复其原始的二维形状。为了进一步增加植入物的维数,折纸 [6,11] 或受剪纸启发的 [12] 折叠元素已与增材制造技术相结合,以实现从二维平面到三维最终结构的形状变化。特别是,形状记忆聚合物的 3D 打印促进了患者定制支架的直接制造。 [13] 例如,具有剪纸结构的分叉支架在折叠状态下在血管内顺利移动,并通过外部刺激成功展开到最终位置。 [12] 然而,传统的折纸或剪纸装置只能达到简单的最终三维几何形状,这受到固有基底结构的限制。因此,需要提高形状可变形性,并在原始状态和变形状态之间达到更高的纵横比。这项技术改进将带来各种各样的应用,包括可变形电子设备和支架设备等生物医学设备。在本研究中,我们提出了一种 3D 打印的独立元素设计,灵感来自高度可变形的日本表演工具,称为南京玉足垂(也称为南京玉足垂;“南京”,南京的名字)
重建和再生骨科手术引起了人们对制造用于植入的人造身体部位的浓厚兴趣。医学的进步和发展提高了生物材料在受损身体部位修复中的应用。在不同类型的生物材料中,生物陶瓷在假肢(一种用于替代生物部位的人造机械装置)中越来越受欢迎。生物陶瓷对人类和其他哺乳动物具有生物相容性,因此可用于修复任何未固定的部位。由于生物陶瓷与宿主组织非常相似,因此它可以促进生物体的再生反应(Dorozhkin 2010)。值得注意的是,生物陶瓷有助于最大限度地减少对金属表面的暴露,从而通过减少潜在致敏离子的来源增强用户的假肢体验(Piconi 和 Maccauro 2015)。在骨科手术中,全膝关节置换术 (TKA) 和全髋关节置换术 (THA) 的手术速度超过其他所有手术,因此成本高昂且结果持久性差 (Schwartz 等人,2020 年)。生物陶瓷植入物具有优异的生物相容性、承受更大扭矩的能力、承载能力、低密度和高耐腐蚀/耐磨性,因此在 THA/TKA 手术中对其的需求日益增加。虽然 THA 需要更换上股骨(大腿骨)并重新铺面/更换匹配的骨盆(髋骨),但 TKA 是指更换下股骨、胫骨和髌骨的患病软骨表面 (Joseph,2003 年)。由于反应性较低、早期稳定和功能寿命较长,生物陶瓷植入物显示出复制原始骨骼机械行为的潜力(Shekhawat 等人,2021 年)。从实际情况来看,陶瓷植入物的有限寿命也可能需要对全膝关节置换/全髋关节置换患者(rTKA/rTHA)进行翻修手术。此外,任何意外的机械不匹配或陶瓷碎片感染都可能导致膝关节和髋关节植入物过早失效(Shekhawat 等人,2021 年)。埃默里大学骨科外科系的一份报告
随着神经植入技术的快速发展,对其供电机制的细致了解变得不可或缺,尤其是考虑到长期的生物相容性风险,如氧化应激和炎症,这些风险可能会因反复手术(包括更换电池)而加剧。本综述深入进行了全面分析,首先考虑了能量存储单元和传输方法的生物相容性。本综述重点介绍了为神经植入物供电的四种主要机制:电磁、声学、光学和直接连接到身体。其中,电磁方法包括近场通信 (RF) 等技术。使用高频超声波的声学方法在电力传输效率和多节点询问能力方面具有优势。光学方法虽然仍处于早期开发阶段,但使用近红外 (NIR) 光显示出良好的能量传输效率,同时避免了电磁干扰。直接连接虽然有效,但也存在相当大的安全风险,包括感染和神经组织内的微运动干扰。本综述采用了特定吸收率 (SAR) 和能量传输效率等关键指标来对这些方法进行细致的评估。它还讨论了最近的创新,例如扇形多环超声波换能器 (S-MRUT)、Stentrode 和 Neural Dust。最终,这篇评论旨在帮助研究人员、临床医生和工程师更好地了解为神经植入物供电的挑战,并可能创造新的解决方案。
脑肿瘤、感染、中风和脑损伤等严重疾病都会导致脑肿胀。脑被包裹在颅骨这个保护性但又坚固的结构中,所以任何肿胀都会导致脑部受压。如果不缓解压力,脑部就会受到永久性损伤。当患者脑部任何部位出现肿胀时,外科医生可能会钻一个钻孔(颅骨上的一个小孔)以排出血液,或者进行部分开颅术(一种切除一块颅骨以容纳肿胀的外科手术)。随后,几周后通过颅骨成形术修复部分开颅术。这种对颅骨缺损的外科修复可以保护脆弱的脑组织并恢复颅骨的正常轮廓。
Warwick 等人解决了一个主要问题,即植入物可能引起感染 [4]。密切监测伤口周围的组织,尤其是经皮部位的组织,以防出现白华。为了降低感染的可能性,植入物阵列上的 100 个电极中只有 20 个进行了连接,从而减少了从手臂出来的线束的直径。研究期结束后,没有感染的迹象,也没有在移除时出现身体排斥植入物的迹象。相反,在植入部位周围看到纤维疤痕组织生长,将其固定在原位。当所有 20 个电极和 2 个参考线在植入期间完全发挥作用时,可以看出阵列的稳健性,而由于电极的不连续性和无功能性,在研究结束时只有 3 个电极保持功能。• Erich Talamoni Fonoff 等人对 57 名患有运动障碍的患者进行了研究,他们接受了双侧
科学与医学相结合的医疗技术创新提高了患者的生活质量。尤其值得注意的是植入人体的电子设备(如心脏或大脑)的出现,这些设备能够实时测量和调节生理信号,为帕金森病等棘手疾病提供了新的解决方案。然而,技术限制阻碍了电子设备植入后的半永久性使用。
摘要。植入物领域正在通过生物活性涂层重新定义,这些涂料已成为医疗植入物中的开创性区域。这些独特的涂层包含生物活性分子,具有与相邻生物周围环境相互作用,促进骨整合,提供抗菌质量并为整体植入物功能贡献的特殊能力。本摘要探讨了生物活性涂层中的最新改进和设计,重点是它们在增强医疗植入物的功能和耐用性方面的重要作用。主要目标之一是整合诸如羟基磷灰石和生物活性玻璃等尖端材料,这些材料鼓励植入物整合并产生生物活性离子以进行治疗作用。通过修改这些涂层的表面粗糙度和孔隙度可以准确控制组织的细胞粘附和再生。此外,通过抗生素和银纳米粒子等抗菌药物(例如,感染的风险(这是植入手术中的普遍关注点))也可以最小化。为了实现涂料沉积中的一致性和寿命,这项研究还研究了最新技术,包括等离子体喷涂和静电纺丝。关键字:生物活性,涂料,植入物,骨整合,生物材料