植物疾病对全球粮食安全和农业可持续性构成了重大挑战。有效的疾病管理策略对于减轻病原体对作物产量和质量的影响至关重要。本评论探讨了植物病理技术在疾病管理中的作用,重点介绍了诊断,病原体检测,疾病监测和综合有害生物管理(IPM)方面的进步。我们讨论了分子技术的应用,例如聚合酶链反应(PCR)和下一代测序(NGS),以快速,准确地鉴定植物病原体。此外,我们强调了遥感技术和地理信息系统(GIS)在疾病监视和空间分析中的重要性。此外,我们研究了IPM计划中文化,生物学和化学控制方法的整合,以增强疾病抑制,同时最大程度地减少环境影响。通过综合了最新的研究和技术发展,本综述为植物病理学不断发展的景观及其在可持续农业中的关键作用提供了见解。
1 华中农业大学植物科学技术学院,武汉 430070,中国;sunny.ahmar@yahoo.com (SA);sumbulsaeed717@gmail.com (SS);hafeezbiotech@webmail.hzau.edu.cn (MHUK);shahidbiochem@webmail.hzau.edu.cn (SUK) 2 塔尔卡大学生物科学研究所,2 Norte 685,塔尔卡 3460000,智利;morapoblete@gmail.com 3 华中农业大学资源环境学院,农业部耕地保护重点实验室(长江中下游),武汉 430070,中国;kamiagrarian763@gmail.com 4 华中农业大学生命科学学院农业微生物学国家重点实验室和微生物生物传感器国家重点实验室,武汉 430070,中国; arushafaheem@hotmail.com 5 巴哈瓦尔布尔伊斯兰大学农业与环境科学学院植物病理学系,巴哈瓦尔布尔 63100,巴基斯坦;ambreenagrarian@gmail.com 6 国家生物技术和遗传工程研究所 (NIBGE),费萨拉巴德 38000,巴基斯坦;rauf216@gmail.com 7 COMSATS 信息技术研究所生物科学系,伊斯兰堡 45550,巴基斯坦;sabas.iiui@gmail.com 8 庆熙大学生物技术研究生院和作物生物技术研究所,龙仁 17104,韩国;hwj0602@khu.ac.kr * 通信地址:khjung2010@khu.ac.kr
Pharma Innovation Journal 2023; 12(12):2160-2164 ISSN(E):2277-7695 ISSN(P):2349-8242 NAAS评级:5.23 TPI 2023; 12(12):2160-2164©2023 TPI www.thepharmajournal.com收到:接受:13-09-2023接受:29-10-2023 Jutimala Phookan植物病理学系,阿鲁纳恰尔大学研究学院,阿鲁纳恰尔大学,纳姆萨伊,阿鲁纳纳河畔阿鲁纳克尔·普罗德,印度加州大学,农业科学,阿鲁纳恰尔研究大学,纳姆赛大学,印度阿鲁纳恰尔邦,印度阿鲁纳瓦尔邦,戴安娜·戴安娜·德维昆虫学系农业科学系,农业科学学院,阿鲁纳恰尔大学阿鲁纳恰尔大学,阿鲁纳恰尔大学,印度阿鲁纳恰尔邦研究NAMSAI,印度阿鲁纳恰尔邦
1植物保护学院,山西农业大学,塔古,金宗030801,中国; WJ876106184@163.com 2州植物性疾病和虫害生物学的国家主要实验室,植物保护研究所,中国农业科学院,中国北京100193,中国; wangdan_star@163.com(d.w.); jixiaobin1@163.com(X.J.); wangjun32213009@163.com(J.W.); daixiaofeng_caas@126.com(X.D.); chenjieyin@caas.cn(J.C。)3美国农业部农业部农作业研究部,美国农业部,美国加利福尼亚州萨利纳斯,美国加利福尼亚州93905; steve.klosterman@ars.usda.gov(S.J.K.); kvsubbarao@ucdavis.edu(K.V.S。)4中国农业科学院西方农业研究中心,长731100,中国5号植物病理学系,加利福尼亚大学,戴维斯分校农业研究站,美国加利福尼亚州萨利纳斯,美国93905 *通信:xiaojuanhao@sxau.edu.edu.cn(X.H. ); zhangdandan@caas.cn(d.z。) †这些作者为这项工作做出了同样的贡献。农业研究站,美国加利福尼亚州萨利纳斯,美国93905 *通信:xiaojuanhao@sxau.edu.edu.cn(X.H.); zhangdandan@caas.cn(d.z。)†这些作者为这项工作做出了同样的贡献。
Ajjamada C. Kushalappa 于 1976 年在美国佛罗里达大学获得博士学位,此前他已在印度班加罗尔农业科学大学获得农业学士和植物病理学硕士学位。1977 年至 1985 年,他担任巴西维科萨联邦大学的客座教授。1985 年,他加入麦吉尔大学,担任植物科学系助理教授,1991 年成为副教授,1918 年成为教授。他曾担任加拿大植物病理学会 (CPS) 流行病学委员会主席、加拿大植物病理学杂志副主编、BMC 植物生物学杂志副主编以及加拿大自然科学与工程研究委员会研究资助小组成员。他因在植物病理学方面做出的杰出贡献而荣获 CPS 赞助的 DL Bailey 博士和夫人奖。过去六年,他曾受邀在 16 场国内和国际会议上就“植物生物胁迫抗性和基因组编辑”发表演讲。他目前的研究重点是基于基因组编辑增强植物代谢物和多种疾病抗性。
当今发病机理中毒素的概念在植物病理领域取得了重要的位置。因为一旦发现并表征了病原体的有毒代谢产物,它就打开了许多打击病原体的方法。微生物使用毒素作为武器造成损害并最终破坏宿主细胞。植物致病细菌和真菌通过产生可扩散的毒素损害其宿主。这些毒素会诱导几种症状,例如绿化,坏死,浸泡和枯萎,导致植物死亡。这些毒素(次生代谢产物)即使在微分浓度下也对植物也有危险,许多毒素至少繁殖了一些相关的真菌或细菌疾病的症状。植物病原体将毒素用作感染易感宿主的武器。在理解这些微生物毒素的性质,结构及其作用方式方面取得了重大进展,这在本文中进行了讨论。除了被用来确定植物性疾病的耐药性,筛查抗病性突变体并管理疾病,研究致病毒素及其致病性的潜在机制对于了解宿主 - 病原体相互作用至关重要。
制药创新杂志 2023;SP-12(11): 1033-1036 ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS 评级:5.23 TPI 2023; SP-12(11): 1033-1036 © 2023 TPI www.thepharmajournal.com 收稿日期: 2023-08-08 接受日期: 2023-11-09 Amrutha G 印度卡纳塔克邦卡拉布拉吉农业学院农业微生物学系 Mahadevaswamy 印度卡纳塔克邦赖久尔农业科学大学农业微生物学系 Swapna 印度卡纳塔克邦赖久尔农业科学大学农业微生物学系 Anand N 印度卡纳塔克邦卡拉布拉吉农业学院土壤科学与农业化学系 Balakrishna R 印度卡纳塔克邦哈加里农业学院农业微生物学系 Suhas PD 印度北方邦普拉亚格拉杰 SHUATS 植物病理学系 通讯作者: Amrutha G印度卡纳塔克邦卡拉布拉吉农学院
研究文章 eISSN: 2306-3599; pISSN: 2305-6622 棉花中的基本五半胱氨酸基因家族:综合基因组特征和盐胁迫响应基因表达谱分析 Laviza Tuz Zahra 1 , Fariha Qadir 1 , Abdul Hafeez 2 , Muhammad Saleem Chang 2 , Maqsood Ahmed Khaskheli 3 , Madan Lal 2,7 , Mehreen Fatima 8、Sehar Fatima 1、Ali Hamza 1、Ayesha Khalid 6、Sadia Shehzad 1、Annas Imran 1、Rida Tabbusam 1、Waseem sarwar 1、Aleena Farooq 4、Uswa Maryam 5、Muhammad Usama Javed 1、Pakeeza Aslam 1、Aliza Sarwar 1、阿里侯斯奈因·阿尔维 1、萨尔曼·阿里·苏海尔9、Ghulam Rasool 1 和 Abdul Razzaq 1* 1 拉合尔大学分子生物学与生物技术研究所,巴基斯坦 2 信德农业大学 Umerkot 分校农学系,信德省巴基斯坦 3 贵州大学农学院植物病理学系,贵州贵阳 550025,中国 4 拉合尔政府学院大学,拉合尔,巴基斯坦 5 国家生物技术和遗传工程研究所,费萨拉巴德,巴基斯坦 6 拉合尔女子大学,拉合尔,巴基斯坦 7 中国农业科学院烟草研究所,山东省青岛 266101,中国 8 联合健康科学学院; 9 拉合尔大学土木工程系,巴基斯坦 *通讯作者:biolformanite@gmail.com
1 Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden 2 Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden 3 Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748德国Garching,4 4个真菌学和微生物学中心,塔尔图大学,利维2,50409塔尔图,爱沙尼亚5号塔尔图5赫尔辛基(P.O.)Box 7,Fi-00014,芬兰赫尔辛基8环境系统科学系,苏黎世,苏黎世,2,8092苏黎世,瑞士9号,瑞士9互动设计和软件工程,查尔默斯技术大学,林德霍尔姆斯森1号,林德霍尔姆斯普拉斯1号,417 56戈特堡科学,弗林德·霍尔姆斯普拉斯(Lindholmsplatsen 1) Bergen, Norway 11 Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria 12 Department of Biotechnology, Iranian Research Organization for Science and Technology, PO Box 3353-5111, Tehran 3353136846, Iran 13 Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT UTRECHT,荷兰14森林真菌学和植物病理学系,瑞典农业科学大学,Box 7026,750 07 07 UPPSALA,瑞典15号,15号瑞典,数学科学系,查尔默斯大学,瑞典戈特伯格大学,瑞典16 16 16自然历史博物馆,TARTARTHIAN,VANEMUISE,VANEMUISE,VANEMUISE,VANEMUISE,VANEMUISEBox 7,Fi-00014,芬兰赫尔辛基8环境系统科学系,苏黎世,苏黎世,2,8092苏黎世,瑞士9号,瑞士9互动设计和软件工程,查尔默斯技术大学,林德霍尔姆斯森1号,林德霍尔姆斯普拉斯1号,417 56戈特堡科学,弗林德·霍尔姆斯普拉斯(Lindholmsplatsen 1) Bergen, Norway 11 Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria 12 Department of Biotechnology, Iranian Research Organization for Science and Technology, PO Box 3353-5111, Tehran 3353136846, Iran 13 Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT UTRECHT,荷兰14森林真菌学和植物病理学系,瑞典农业科学大学,Box 7026,750 07 07 UPPSALA,瑞典15号,15号瑞典,数学科学系,查尔默斯大学,瑞典戈特伯格大学,瑞典16 16 16自然历史博物馆,TARTARTHIAN,VANEMUISE,VANEMUISE,VANEMUISE,VANEMUISE,VANEMUISE
本实验是在纳瓦萨里农业大学农业学院植物病理学系进行的。所有分离株通过不同的染色染料和细菌分离株CD35均赋予菌落周围的透明区域均显示出所有染料中最高的纤维素分解指数。接下来,革兰氏碘(3.34)的CD35的纤维素分解指数在Coomassie Brillial Blue(2.96),Safranin(2.55)和刚果红(2.15)下接下来是最高的。显着地,接种后24小时记录了CD35(0.169 U ML -1)的较高的纤维素酶活性,随后是CD17(0.124 U ML -1),CD19(0.101 U ML -1)和CD11(0.081 U ML -1)(0.081 U ML -1),而在CD222222222222222222222221)。最大纤维素酶活性,接种后最大96小时。CD35在72小时时给出了显着最大的纤维素酶活性(0.822 U mL -1)。为了使纤维素酶活性为CD17(0.477 U ML -1),与CD19(0.471 U ML -1)相当,然后是CD11(0.292 U ML -1),而CD22中的最低(0.199 U ML -1)。通过形态学,生化和分子方法将纤维素分解细菌CD35鉴定为枯草芽孢杆菌,并提交给具有MW715021的NCBI GenBank数据库。