在几项先前报道的临床研究中,同种疗法尚未成功治疗椎板炎。尽管缺乏基于证据的科学研究,但有间接的证据表明针灸会改善马的la脚和疼痛[7-13]。传统中药包括针灸,广泛用于促进人类和动物的治疗。使用当代研究仪器(例如复杂的成像技术)表明,针灸会引发一系列与内源性阿片类药物样物质释放有关的反应,例如邻苯二芬蛋白,内啡肽和内源,并且可能存在于血浆和脑脑植物中。但是,其确切的作用机理仍然未知。也已经证明,边缘系统对于针灸引起的镇痛至关重要[14]。
图 2。椎腔 X 射线参数。(A): Ba:椎底(枕骨大孔前缘的最下点);EsfL:蝶骨线(与蝶骨下缘相切,与 Ba 成正比);PL:腭线(从鼻棘前部到鼻棘后部);Pm:翼上颌线(鼻底边缘与上颌骨后缘的交点);PmL:翼上颌线(与 Pm 成垂直于 PL 成正比);aa:寰椎前部(寰椎最前点);aaL:寰椎前线(与 aa 成垂直于 PL 成正比)。(B): S:鞍区(位于鞍区的几何中心);Ba:椎底; S 0 :S-Ba 距离中点;Pm:翼上颌;ad 1 :Pm-Ba 线与咽扁桃体边界的交点;ad 2 :Pm-S 0 线与咽扁桃体边界的交点。(C): PHF:法兰克福水平面;Pt:翼突(圆孔下缘与翼腭窝后部交点处的点);PtV:垂直翼突(与 PHF 垂直于 Pt 的线);PtV-Ad:咽扁桃体边界与 PtV 之间的距离。(D): SP:上咽。
摘要:由于CT扫描技术的快速技术进步,心血管CT被广泛用于诊断心血管疾病。这些进步包括从早期到最新型号的多层CT的开发,它具有获取具有高空间和时间分辨率的图像的能力。最近的光子计数CT的出现在临床应用中进一步提高了CT性能,从而改善了空间和对比度分辨率。CT衍生的分数流储备优于基于标准CT的解剖学评估,用于检测病变特异性的心肌缺血。CT衍生的3D印刷患者特异性模型也优于标准CT,在教育价值,手术计划和心血管疾病治疗的模拟方面具有优势,并增强了医生 - 患者的交流。三维可视化工具,包括虚拟现实,增强现实和混合现实,进一步提高了心血管疾病中心血管CT的临床价值。随着人工智能,机器学习和心血管疾病中深度学习的广泛使用,心血管CT的诊断性能得到了显着改善,并且在疾病诊断和预测方面都提出了令人鼓舞的结果。还讨论了这些技术的局限性和未来前景。本评论文章概述了心血管CT的应用,从传统的管腔评估的诊断价值的角度涵盖了其性能,以鉴定易受伤害的病变,以通过使用这些高级技术来预测疾病结果。
摘要。光学元面具有无与伦比的灵活性,可以通过下波长的空间分辨率操纵光场。将元面耦合到具有强光学非线性的材料可能允许超快时空光场调制。但是,到目前为止所证明的大多数元整口是线性设备。在这里,我们在实验上证明了同时使用单层等离子式肩面与纤维激光腔中的Epsilon-Near-Zero(ENZ)材料强耦合。虽然元表面的几何阶段被用来将激光器的横向模式从高斯束转换为带有轨道角动量的涡旋束,但通过Q -Switching过程,ENZ材料的巨大非线性可饱和吸收使脉冲激光产生。在激光腔中直接整合时空跨表面可能为开发具有量身定制的空间和时间剖面的微型化激光源铺平了道路,这对于多种应用来说是有用的,例如超级分辨率成像,高密度光学存储,高密度光学储存以及三维激光射击光刻。
本文部分分为几个部分。被认为有必要引入/更新LBP以及腰椎生物力学和手术病理学的最新概念。首先,具有统计数据的脊柱和腰椎生物力学的最新进展;表1;引入。也提出了作者的评论,概念和标准。其次,向基于腰椎子单位的生物力学数学模型进行了简报。图2。最后,精确地指出了研究的目标。脊柱生物力学和脊柱病理学最近的进步腰椎在大多数一生中承担着大约500 N的腹部 - 腹部负荷:[1-3主要是]。但是,当任何患者举重时,磁盘的反作用力可能达到6.000 n [3]。原因是,勃起脊[3]产生了相当高的力量;弯曲时刻也有
IDENTITI™ 颈椎独立椎间系统使用说明一般信息:IdentiTi 颈椎独立椎间系统是一种集成式椎间融合装置,用于前路颈椎间盘切除和融合 (ACDF) 手术。IdentiTi 颈椎独立椎间系统由集成式椎间垫块和骨螺钉组成,它们有多种配置,可以适应个体患者的身体结构。IdentiTi 颈椎独立椎间系统椎间垫块采用符合 ASTM F67 标准的商用纯多孔钛(CP Ti 2 级;非合金钛)和符合 ASTM F136 标准的钛合金(Ti-6Al-4V ELI)组合制成。IdentiTi 颈椎独立椎间系统椎间垫块有多种尺寸,长度、宽度、高度和脊柱前凸角度各不相同,可以适应个体患者的身体结构。椎间隔离器可容纳两枚骨螺钉,这些骨螺钉由符合 ASTM F136 标准的钛合金 (Ti-6Al-4V ELI) 制成,长度和直径各不相同。椎间隔离器单独包装且无菌。骨螺钉以非无菌形式提供,由最终用户清洁和蒸汽灭菌。IdentiTi 颈椎独立椎间系统提供可重复使用的器械,以支持各种手术技术,与 ACDF 方法相同,由不锈钢和其他材料制成。它们以非无菌形式提供,由最终用户清洁和灭菌。使用指征:IdentiTi 颈椎独立椎体间系统是一种独立的前路颈椎椎体间融合系统,旨在用于骨骼成熟的患者,用于治疗颈椎退化和/或颈椎不稳定,经影像学研究(X 光片、CT、MRI)证实,导致从 C2 到 T1 的多个连续水平出现神经根病、脊髓病和/或疼痛。IdentiTi 颈椎独立椎体间系统旨在与自体移植、由皮质、松质和/或皮质-松质骨移植组成的异体移植、脱矿异体移植和骨髓抽吸物或它们的组合一起使用。禁忌症:该系统禁用于:
在 IDEXX 远程医疗顾问的电子病历系统中搜索了 2023 年 1 月 1 日至 2023 年 3 月 31 日期间接受胸部 X 光检查的 YT、哈巴狗、POM 和 BT。这些 X 光片之前已提交给 IDEXX 远程医疗顾问进行远程医疗审查。如果狗进行了 2 次或 3 次胸部 X 光检查(至少 1 次右侧胸部 X 光检查和 1 次腹背或背腹视图),并且未发现心肺或全身疾病的证据,则将其纳入。所有 X 光检查不完整和/或已知心外疾病的狗均被排除在外(即胸部 X 光片上的异常,如胸腔积液、淋巴结肿大、肺炎或肿瘤)。定位不佳的放射线研究限制了研究心脏病专家判断的 VHS 和 VLAS 测量的准确性,因此也被排除在外。研究中包括的所有狗都必须具有正常的心脏听诊,这由进行身体检查的原始兽医记录在远程医疗咨询表中。所有报告有心脏杂音的狗都被排除在外。如果狗没有报告心脏杂音,但最初的 IDEXX 放射科医生或心脏病专家报告主观心脏扩大,正在服用可能影响心脏大小的心脏药物(即匹莫苯丹或利尿剂),有无谷物饮食史,或有 N 端脑钠肽前体升高史,则该狗被称为“疑似心脏病”并被排除在外。从患者记录和射线照片中收集的数据包括年龄、体重、性别、VHS 和 VLAS。所有品种的 VHS 和 VLAS 测量均由同一位获得委员会认证的心脏病专家进行。由于所有 X 光片都是数字格式,因此使用数字卡尺进行测量并在右侧 X 光片上进行。VHS 测量采用 Buchanan 和 Bücheler 1 最初描述的技术,其中测量心脏长轴从隆突中心到心脏腹尖最远端轮廓。隆突被定义为气管内透射线的圆形结构,代表左、右主支气管的分叉。心脏短轴在心脏中央第三区域测量,垂直于长轴。然后将两个轴测量值定位在胸椎体上,从第四胸椎的颅缘开始。两个轴的总和用于确定最接近 0.1 个椎骨的椎骨单位数(补充图 S1)。所有测量均为
腔量子电动力学通过将谐振器与非线性发射器 1 耦合来探索光的粒度,在现代量子信息科学和技术的发展中发挥了基础性作用。与此同时,凝聚态物理学领域因发现底层拓扑 2 – 4 而发生了革命性的变化,这种拓扑变化通常源于时间反演对称性的破缺,例如量子霍尔效应。在这项工作中,我们探索了拓扑非平凡的 Harper-Hofstadter 晶格 5 中 transmon 量子比特的腔量子电动力学。我们组装了铌超导谐振器 6 的晶格,并通过引入亚铁磁体 7 来破缺时间反演对称性,然后再将系统耦合到 transmon 量子比特。我们用光谱方法分辨晶格的各个体模式和边缘模式,检测激发的 transmon 和每个模式之间的 Rabi 振荡,并测量 transmon 的合成真空诱导兰姆位移。最后,我们展示了利用 transmon 计数拓扑能带结构每个模式内单个光子 8 的能力。这项工作开辟了实验手性量子光学 9 领域,使微波光子的拓扑多体物理成为可能 10,11,并为背向散射弹性量子通信提供了途径。由光构成的材料是量子多体物理学的一个前沿 12 。依靠非线性发射器来产生强光子 - 光子相互作用和超低损耗超材料来操纵单个光子的属性,这个领域探索了凝聚态物理和量子光学的接口,同时生产用于操纵光的设备 13,14。最新研究成果表明,光子在具有拓扑特性15的光子中会经历圆形时间反转破缺轨道,这为探索诸如(分数)量子霍尔效应2、3、Abrikosov晶格16和拓扑绝缘体4等固态现象的光子类似物提供了机会。在电子材料中,圆形电子轨道是由磁或自旋轨道耦合4产生的。与电子不同,光子是电中性物体,因此不会直接与磁场耦合。因此,人们正在努力为光子生成合成磁场,并更广泛地探索在合成光子平台中拓扑量子物质的概念。光学和微波拓扑光子学都在这一领域取得了重大进展。在硅光子学 17、18 和光学 19、20 中,通过在偏振或空间模式中编码伪自旋,已经实现了合成规范场,同时保持了时间反转对称性。在射频和微波超材料中,已经探索了具有时间反转对称性 21、22 和破缺时间反转对称性的模型,其中时间反转对称性破缺由以下因素引起:
摘要:激光无处不在,用于信息存储,处理,通信,传感,生物学研究和医疗应用。为了减少其能量和材料的使用,一个关键的追求是将激光器降低到纳米腔。获得最小的模式量需要等离激液腔,但是对于这些,增益仅来自一个或几个发射器。到目前为止,由于增益低和空腔损失高,在此类设备中的激光是无法实现的。在这里,我们演示了一种接近单分子发射极制度的等离激液量的“发射器激光”的形式。少数发射机的激光过渡显着宽广,取决于分子的数量及其各个位置。我们表明,可以通过开发一种延伸以前的弱耦合效率的方法来理解这种非标准的少数发射机。我们的工作为开发纳米剂应用以及以少数发射器的极限开发的基础研究铺平了道路。
