使用神经生物学约束的人类大脑语义学习模型来模拟具体和抽象概念的习得,无论有无言语标签。使用赫布学习机制模拟概念习得和语义学习。我们测量了网络的类别学习性能,定义为它成功地(i)将部分重叠的感知实例分组为单个(抽象或具体)概念表征,同时(ii)仍然区分不同概念的表征的程度。给定概念的语言标签与感知实例的共存通常会改善网络对类别的学习,对抽象概念的有益效果明显大于具体概念。这些结果为语言结构对概念形成和这些概念实例的感知运动处理的因果影响提供了神经生物学解释:在概念习得期间提供言语标签可以改善皮质机制,通过这种机制,对物体和动作的体验以及单词的学习会导致形成特定概念和含义的神经元集合。此外,本研究结果还做出了一个新颖的预测,即这种“沃尔夫”效应应该受到所习得语义类别的具体性/抽象性的调节,语言标签更有利于抽象概念的学习,而非具体概念的学习。本文是主题问题“互动中的概念:社会参与和内在体验”的一部分。
使用神经生物学约束的人类大脑语义学习模型来模拟具体和抽象概念的习得,无论有无言语标签。使用赫布学习机制模拟概念习得和语义学习。我们测量了网络的类别学习性能,定义为它成功地(i)将部分重叠的感知实例分组为单个(抽象或具体)概念表征,同时(ii)仍然区分不同概念的表征的程度。给定概念的语言标签与感知实例的共存通常会改善网络对类别的学习,对抽象概念的有益效果明显大于具体概念。这些结果为语言结构对概念形成和这些概念实例的感知运动处理的因果影响提供了神经生物学解释:在概念习得期间提供言语标签可以改善皮质机制,通过这种机制,对物体和动作的体验以及单词的学习会导致形成特定概念和含义的神经元集合。此外,本研究结果还做出了一个新颖的预测,即这种“沃尔夫”效应应该受到所习得语义类别的具体性/抽象性的调节,语言标签更有利于抽象概念的学习,而非具体概念的学习。本文是主题问题“互动中的概念:社会参与和内在体验”的一部分。
所研究主题的相关性是由于今天需要快速回应外部挑战,而国家经济发展监管的主要措施之一是财政机制。选择有效的选择来解决此问题将有助于刺激企业家活动,增加各级预算的收入量,并允许为社会领域的需求使用理性资金。提出了一种用于构建国家经济财政监管概念的算法,该算法设想了11个立场。这使得朝这个方向发展一个概念成为可能。审查了与引入数字技术的引入和改善其在财政环境中有效使用的方向相关的财政变形。