DiffSim: Denoising diffusion probabilistic models for generative facies geomodeling Minghui Xu*, Suihong Song, Tapan Mukerji Stanford University SUMMARY Constructing high-resolution and realistic geomodels plays an important role in the decision-making processes of earth resources exploration and other sustainability strategies like subsurface carbon dioxide sequestration.生成模型在地系上表现出巨大的希望,因为它们能够嵌入抽象的地质知识。因此,我们探讨了降解扩散模型,新的生成方法的能力,以学习地下相地模型的复杂和高维数据分布。合成通道数据集的实验说明了无条件扩散模型在保证空间模式,数据分布和多样性中的有效性。重要的是,这些模型产生了与地质真实性相矛盾的文物的实现。此外,我们还测试了有条件的扩散模型,以创建逼真的相模型,同时调节井相数据。引言生成符合地质学家知识和空间统计关系的模型对于理解地质过程和地球资源探索至关重要。传统的地址化方法,例如基于变量图或基于多个统计的方法(MPS),已经证明了它们学习空间模式并在许多情况下产生相对逼真的地质模型的能力(González等,2008; Linde等,2015)。但是,它们有效地描述了有效的地质模式的能力有限。例如,变量图仅依靠两点关系来构建地质模型,该地质模型无法描述高度非线性的模式。与基于变异函数的方法相比,MP可以捕获更复杂的地质现象。然而,国会议员仍然面临着在强烈异质地质环境中准确再现复杂现实主义的挑战。深度学习的生成模型通过有效捕获输入数据集的基本分布来综合高维数据,在综合高维数据中取得了出色的性能。许多研究人员已将生成对抗网络(GAN)应用于地理编码(Zhang等,2019; Song等,2021a,2021b)和反转问题(Mosser等,2020; Song等,2023)。但是,gan的培训可能会面临挑战,因为两个神经网络(发电机和歧视者)以对抗性方式同时训练。
扩散概率模型 (DPM) 近期成为计算机视觉领域最热门的话题之一。其图像生成应用(如 Imagen、潜在扩散模型和稳定扩散)已展示出令人印象深刻的生成能力,引发了社区的广泛讨论。此外,许多近期研究发现 DPM 可用于多种其他视觉任务,包括图像去模糊、超分辨率和异常检测。受 DPM 成功的启发,我们提出了 MedSegDiff,这是第一个基于 DPM 的用于一般医学图像分割任务的模型。为了增强用于医学图像分割的 DPM 中的逐步区域注意力,我们提出了动态条件编码,它为每个采样步骤建立状态自适应条件。此外,我们提出了特征频率解析器 (FF-Parser) 来消除此过程中高频噪声成分的负面影响。我们在三种不同图像模态的医学分割任务上验证了 MedSegDiff 的有效性,包括眼底图像上的视杯分割、MRI 图像上的脑肿瘤分割和超声图像上的甲状腺结节分割。我们的实验结果表明,MedSegDiff 的表现比最先进的 (SOTA) 方法有相当大的性能差距,证明了所提模型的泛化和有效性。关键词:扩散概率模型、医学图像分割、脑肿瘤、视杯、甲状腺结节
近年来,深度生成模型对工程和科学产生了深远的影响,彻底改变了图像和音频生成等领域,并提高了我们建模科学数据的能力。特别是,去噪扩散概率模型 (DDPM) 已被证明可以准确地将时间序列建模为复杂的高维概率分布。实验和临床神经科学也将受益于这一进步,因为准确建模神经生理时间序列,例如脑电图 (EEG)、皮层电图 (ECoG) 和局部场电位 (LFP) 记录及其合成生成可以实现或改进各种神经科学应用。在这里,我们提出了一种使用 DDPM 建模多通道和密集采样的神经生理记录的方法,该方法可以灵活地应用于不同的记录模式和实验配置。首先,我们表明 DDPM 可以为各种数据集 11 生成逼真的合成数据,包括不同的记录技术(LFP、ECoG、EEG)和物种(大鼠、猕猴、人类)。DDPM 生成的时间序列准确捕获单通道和多通道统计数据,例如频谱和 13 相位幅度耦合,以及细粒度和数据集特定特征,例如尖锐的波纹。14 此外,可以根据实验条件或大脑状态等其他信息生成合成时间序列。我们展示了 DDPM 在几种神经科学特定分析中的实用性和灵活性,例如大脑状态分类和缺失通道的归纳以改进神经解码。总之,DDPM 可以作为神经生理记录的精确生成模型,并且在概率生成合成时间序列以用于神经科学应用方面具有广泛的实用性。20
系统发育模型已经变得越来越复杂,系统发育数据集在规模和丰富度方面都扩大了。但是,当前的推理工具缺乏模型指定语言,可以简单地描述完整的系统发育分析,同时独立于实施细节。我们引入了一种新的轻巧和简洁的模型规范语言“ lphy”,该语言被设计为人类和机器可读性。图形用户界面伴随“ lphy”,允许用户构建模型,模拟数据并创建描述模型的自然语言叙述。这些叙述可以作为手稿方法部分的基础。此外,我们提出了一个命令行界面,用于将LPHY指定模型转换为与BEAST2软件平台兼容的分析规范文件(XML格式)。总的来说,这些工具旨在增强植物研究中描述的清晰度和概率模型的报告,最终促进结果的可重复性。
癫痫发作在大脑网络中的扩散是癫痫患者的主要致残因素,通常会导致意识丧失。尽管在记录和建模大脑活动方面取得了进展,但揭示癫痫发作扩散动力学的性质仍然是理解和治疗药物难治性癫痫的重要挑战。为了应对这一挑战,我们引入了一种新的概率模型,该模型可以捕捉患者特定复杂网络中的扩散动力学。通过白质纤维束成像估计大脑区域之间的网络连接和交互时间延迟。该模型的计算可处理性使其能够对更详细的癫痫发作动力学模型发挥重要的补充作用。我们在患者特定的 Epileptor 网络背景下说明了模型拟合和预测性能。我们针对不同的患者特定网络推导出扩散大小(序参数)作为大脑兴奋性和全局连接强度的函数的相图。相图可以预测癫痫发作是否会根据兴奋性和连接强度扩散。此外,模型模拟可以预测癫痫发作在网络节点间传播的时间顺序。此外,我们表明,随着神经兴奋性和连接强度的变化,序参数可以表现出不连续和连续(临界)相变。平均场近似和有限尺寸缩放分析支持存在一个临界点,在该临界点处,响应函数和扩散大小的波动相对于控制参数表现出幂律发散。值得注意的是,临界点将两种不同的扩散动力学状态分开,其特征是单峰和双峰扩散大小分布。我们的研究为癫痫发作扩散动力学的相变和波动性质提供了新的见解。我们预计它将在开发用于预防药物抵抗性癫痫发作扩散的闭环刺激方法中发挥重要作用。我们的研究结果也可能引起流行病学、生物学、金融学和统计物理学中相关扩散动力学模型的兴趣。
摘要:本研究提出了一种航空发动机预测与健康管理(PHM)框架,该框架结合了动态概率(DP)模型和长短期记忆神经网络(LSTM)。采用基于高斯混合模型-自适应密度峰值聚类算法的DP模型从发动机服役开始对故障发展进行建模,具有训练时间极短、精度足够高的优点,并引入主成分分析将复杂的高维原始数据转换为低维数据。该模型可根据发动机数据的积累不断更新,以捕捉发动机故障的发生和演变过程。针对常用数据驱动方法存在的问题,采用DP+LSTM模型对发动机剩余使用寿命(RUL)进行估算。最后,利用 NASA 的商业模块化航空推进系统仿真数据集对所提出的 PHM 框架进行了实验验证,结果表明 DP 模型在故障诊断中比经典的人工神经网络方法具有更高的稳定性,而 DP + LSTM 模型在 RUL 估计中的准确率高于其他经典的深度学习方法。
去噪扩散概率模型 (DDPM) 最近在图像合成中表现出色,并在各种图像处理任务中得到广泛研究。在这项工作中,我们提出了一种用于生成三维 (3D) 医学图像的 3D-DDPM。与以前的研究不同,据我们所知,这项工作首次尝试研究 DDPM 以实现 3D 医学图像合成。我们的研究检查了脑肿瘤高分辨率磁共振图像 (MRI) 的生成。通过在半公开数据集上的实验对所提出的方法进行了评估,定量和定性测试都显示出有希望的结果。我们的代码将在 https://github.com/DL-Circle/3D-DDPM 上公开提供。关键词:扩散模型、图像合成、磁共振成像 (MRI)。
我们使用扩散概率模型表示高质量的图像合成结果,这是一种受非平衡热力学考虑因素启发的潜在变量模型。我们的最佳结果是通过根据扩散概率模型与Langevin Dynamics匹配的扩散概率模型和降级分数之间的新联系而设计的,我们的模型可以解释为一种渐进的损失减压方案,该方案可以解释为自动性解码的普遍化。在无条件的CIFAR10数据集中,我们获得的成立分数为9.46,最先进的FID得分为3.17。在256x256 LSUN上,我们获得了类似于Progenkivegan的样品质量。我们的提示可在https://github.com/hojonathanho/diffusion上获得。
写致谢词是结束论文工作的关键步骤。我提前向那些我在这些感谢中可能忘记的人表示歉意。首先,我必须感谢那些通过自己的决定允许我写下这些致谢并发表这篇论文的人。我对 Carsten P ROPPE 先生和 Bertrand I OOSS 先生接受担任这项工作报告员的繁重任务表示最深切的感谢。感谢您详细、亲切、热情的报告以及提出的意见和建议!这些要素以及你们在答辩期间提出的问题都是我个人对工作意义进行科学反思的来源,并为未来的工作形成了多种途径:谢谢你们俩。对于同意担任我的辩护陪审团主席的 Bruno S UDRET 先生,我致以最热烈的感谢。您担任我的评审团主席是我的荣幸和荣幸。最后,我要感谢最后两位同意审查本论文工作的外部评审委员会成员。我向 Béatrice L AURENT -B ONNEAU 女士和 Christian G OGU 先生致以最诚挚的谢意,并对他们对我工作的善意以及在我辩护期间提出的许多问题表示感谢。感谢成员后
大多数自然领域可以通过多种方式表示:我们可以根据其营养内容或社会角色对食物进行分类,动物的分类学群体或其生态壁ni,以及乐器根据其分类学cate-cate-gore-gore或社会用途。对人类分类进行建模的先前方法在很大程度上忽略了交叉分类的问题,专注于学习一个单一的类别系统,这些类别可以解释所有功能。跨类别提出了一个困难的概率:我们如何在不首先知道该类别要解释的情况下推断类别?我们提出了一个新型模型,该模型表明人类跨类别是关于多个类别系统及其解释的特征的联合推断的结果。我们还为交叉分类行为形式化了两个常见的替代解释:第一个特征和对象 - 第一个方法。第一种方法表明,交叉分类是注意力程序的结果,其中特征是通过注意机制选择的,并且类别是第二个。对象 - 第一个方法表明,跨属性是重复的,顺序解释特征的连续性尝试,其中类别是第一个派生的,然后重新解释的特征。我们提出了两组模拟和实验,以测试模型对人类分类的预测。2011 Elsevier B.V.保留所有权利。我们发现,基于共同推论的方法为人类分类行为提供了最佳拟合,我们建议对人类类别学习的完整说明需要纳入类似于这些能力的东西。