几何模型拟合是一个具有挑战性但又十分基础的计算机视觉问题。最近,量子优化已被证明可以增强单模型情况的稳健拟合,同时多模型拟合的问题仍未得到解决。为了应对这一挑战,本文表明后一种情况可以从量子硬件中显著受益,并提出了第一种多模型拟合 (MMF) 的量子方法。我们将 MMF 表述为一个问题,现代绝热量子计算机可以对其进行有效采样,而无需放宽目标函数。我们还提出了一种迭代和分解版本的方法,该方法支持真实世界大小的问题。实验评估在各种数据集上都显示出有希望的结果。源代码可在以下位置获得:https://github.com/FarinaMatteo/qmmf 。
描述 用于分析空间点模式的综合开源工具箱。主要关注任何空间区域中的二维点模式,包括多类型/标记点。还支持三维点模式、任意维度的时空点模式、线性网络上的点模式和其他几何对象的模式。支持空间协变量数据,例如像素图像。包含 3000 多个用于绘制空间数据、探索性数据分析、模型拟合、模拟、空间采样、模型诊断和形式推理的函数。数据类型包括点模式、线段模式、空间窗口、像素图像、镶嵌和线性网络。探索性方法包括样方计数、K 函数及其模拟包络、最近邻距离和空白空间统计、Fry 图、成对相关函数、核平滑强度、交叉验证带宽选择的相对风险估计、标记相关函数、分离指数、标记依赖性诊断和协变量效应的核估计。还支持随机模式的正式假设检验(卡方、Kolmogorov-Smirnov、蒙特卡罗、Diggle-Cressie-Loosmore-Ford、Dao-Genton、两阶段蒙特卡罗)和协变量效应检验(Cox-Berman-Waller-Lawson、Kolmogorov-Smirnov、ANOVA)。可以使用与 glm() 类似的函数 ppm()、kppm()、slrm()、dppm() 将参数模型拟合到点模式数据。模型类型包括泊松、吉布斯和考克斯点过程、奈曼-斯科特聚类过程和行列式点过程。模型可能涉及对协变量的依赖、点间相互作用、聚类形成和对标记的依赖。模型通过最大似然法、逻辑回归法、最小对比度法和复合似然法进行拟合。可以使用函数 mppm() 将模型拟合到点模式列表(重复的点模式数据)。除了上面列出的所有特征外,该模型还可以包括随机效应和固定效应,具体取决于实验设计。
本作品根据 Creative Commons Attribution 4.0 许可协议授权。有关更多信息,请参阅 https://creativecommons.org/licenses/by/4.0/
软件可靠性增长模型 [1] 适用于与测试期间经历的故障相关的时间序列数据,以预测达到所需故障强度或故障间隔时间等指标。从历史上看,人们采用了牛顿法等数值算法,这些算法需要良好的初始参数估计,因此应用 SRGM 需要高水平的专业知识。最近克服传统数值方法不稳定性的方法包括群体智能 [2] 等技术,它表现出强大的全局搜索能力。然而,这些技术可能需要大量的计算资源和时间来收敛到精确的最优值,这对 SRGM 很重要,因为一些模型参数对其他参数的精确估计非常敏感。此外,过去大多数应用群体智能的研究