摘要:社会企业包含不同的逻辑,因此寻找能够调和经济和社会目标冲突的商业模式非常复杂。我们认为数字技术可以帮助社会企业家克服这一困难。事实上,本文旨在通过对这些不同研究流派进行系统的文献综述,全面介绍(1)商业模式创新、(2)社会企业和(3)基于人工智能的创造力支持工具的文献现状。我们的目的不是对这三种文献进行全面回顾,而是确定将它们联系起来的主要主题和子主题。在此基础上,我们提出了一种新的观点,即复杂的商业模式创新(例如处理社会企业混合模式的创新)如何通过基于人工智能的创造力支持工具得到推动,并制定了扩大对这一有希望的联系的研究议程。
当前的社会和环境问题 - 社会问题:很多场景是孩子和妇女在街上争相等待游客前来出售他们的手工制品,有时他们不得不站在恶劣的天气中跟随游客,这给刚到的外国游客带来不适和困惑。 - 环境问题:工厂向环境中排放过多的废物,存在许多可能导致工人健康的问题。
视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。
策略设计模式是一种基本的行为设计模式,允许客户端在运行时控制对象的行为。策略模式在 C++ STL 中实际应用,例如将“策略”应用于如何执行操作(例如 std::par 或 std::seq 就是一个例子)——因此策略通常也称为“策略模式”。策略设计模式通常用于在运行时选择算法以最好地解决问题——将算法行为与对象本身分开,以帮助我们的软件更易于维护、扩展和灵活。在本次演讲中,我们将从头开始介绍一系列使用策略模式在运行时部署不同算法的 C++ 示例。我们还将查看部署策略模式的库中的代码示例,并讨论在现代 C++ 中使用策略模式的最佳实践。策略模式还将与模板方法模式进行比较,后者可能是一种替代选择。与会者将通过本次演讲获得继续实施策略模式的知识,以及如何在他们可能正在开展的项目中发现策略设计模式!
1 Research Unit, General University Hospital of Albacete, Health Service of Castilla-La Mancha (SESCAM), Albacete, Spain, 2 Molecular Oncology Laboratory, Molecular Medicine Unit, Associated Unit of Biomedicine, University of Castilla-La Mancha-Spanish National Research Council (UCLM- CSIC), Faculty of Medicine, Albacete, 39 cine, University of Castilla-La Mancha, Albacete, Spain, 4 Immunology Unit, Clinical Analysis Department, General University Hospital of Albacete, Albacete, Spain, 5 Microbiology Department, General University Hospital of Albacete, Albacete, Spain, 6 Research Unit, General University Hospital of Albacete, Albacete, National Parastatics of Toledo, Albacete, Spain, 7 Internal Medicine Department, General University Hospital of Albacete, Albacete, Spain, 8 Biomedicine Institute of UCLM (IB-UCLM), Faculty of Medicine, University of Castilla-La Mancha, Albacete, Spain, 9 Faculty of Pharmacy, Associated University of Castile-La Mancha, 10 of Biomedicine UCLM- CSIC, University of Castilla-La Mancha, Ciudad Real, Spain, 11 Neurology Department, General University Hospital of Albacete, SESCAM, Albacete, Spain, 12 Faculty of Medicine, University of Castilla- La Mancha, Albacete, Spain
Objective: We investigated brain cortical activity alterations, using a resting-state 256-channel high- density EEG (hd-EEG), in Alzheimer's (AD) and Parkinson's (PD) disease subjects with mild cognitive impairment (MCI) and correlations between quantitative spectral EEG parameters and the global cogni- tive status assessed by Montreal Cognitive Assessment (MoCA) 分数。方法:15个AD-MCI,11个PD-MCI和十个年龄匹配的健康控制(HC)进行了HD-EEG记录和神经心理学评估。脑脊液生物标志物分析以获得良好的特征组。EEG光谱特征,并研究了三组之间的差异以及与MOCA的相关性。结果:与对照组相比,AD-MCI和PD-MCI的α2/alpha1比的α2/alpha1比显着降低。在PD-MCI中观察到明显更高的theta和较低的β/theta比。MOCA评分与theta功率以及alpha2和beta功率以及alpha2/alpha1和alpha/theta比率直接相关。结论:这项研究强调了AD-MCI和PD-MCI患者的脑电图模式的显着差异,并指出了EEG参数在两种神经退行性疾病中可能的替代标志物的作用。明显的能力:除了完善的生物标志物外,我们的发现还可以支持神经退行性疾病中认知功能障碍的早期检测,并可以帮助监测疾病的进展和治疗反应。
研究认知功能与潜在大脑活动之间的关系一直是、现在仍然是最大的神经科学挑战之一。功能性磁共振成像 (fMRI) 是一种领先的成像方法,用于量化和绘制与大脑活动相关的代谢变化的地理分布,包括静息时 (Riedl et al., 2016) 或主动处理信息时 (Chen and Glover, 2015)。脑电图 (EEG) 是一种成熟的电生理技术,可安全、非侵入性地 (Cohen, 2017) 记录静息或执行任务时 (Zani and Proverbio, 2003) 突触后浅层大脑活动的时间准确记录 (Burle et al., 2015)。结合脑磁图 (MEG),EEG 对理解不同频率的大脑振荡与特定心理状态和过程的关系做出了广泛贡献 (Benedek et al., 2014)。此外,它还允许测量振幅、相位和同步性的局部变化,并探索与特定认知功能(Perfetti 等人,2011 年;Groppe 等人,2013 年;Roux 和 Uhlhaas,2014 年)相关的空间和时间分布,例如注意力和记忆力。本文将回顾支持认知控制和抑制的焦点和大规模协调模式的当前知识。
Abelian-Higgs模型[1]是一种相对论场理论,其在(2Þ1)维度中的激发采用拓扑稳定的孤子的形式,称为涡旋。该场理论由一个复杂的标量场φ组成,该场φ耦合到u - 1Þ量规场Aμ。静态理论等同于有效的金茨堡 - 兰道理论[2],它描述了一个通过涡旋数量量化的超导体的磁场。涡流解决方案的动力学是这两种理论不同的地方。 Abelian-Higgs模型具有Lorentz不变性[3-5]的二阶动力学[3-5],而依赖时间的Ginzburg-Landau模型则表现出一级动力学[6,7]。这是我们将在本文中重点关注的前二阶动力。请注意,在(3þ1)中的尺寸涡流显示为像弦类似的物体,所产生的宇宙字符串,如果存在,则可以通过对早期宇宙宇宙学的重力贡献来检测到它们[8]。涡流散射已经对单个参数λ的所有值进行了很好的研究[3 - 5,9,10]。此参数将模型分为两种类型; I型I(λ<1)其中涡流表现出长距离吸引力,而II型(λ> 1),其中涡旋在远距离排列。相比之下,在临界耦合(λ¼1)处,
