摘要 - 我提出了一种新颖的增强学习方法,用于在模拟环境中训练四足机器人。在动态环境中控制四足机器人的想法非常具有挑战性,我的方法提出了最佳的政策和培训方案,资源有限,并且表现出色。该报告使用RaisimgyMtorch开源库和专有软件Raisim进行模拟Anymal机器人。我的方法以训练时的机器人步行方案的评估为中心,以制定马尔可夫决策过程。使用在Actor-Critic模式下使用的近端策略优化算法来解决结果的MDP,并使用一台台式机收集了数千个状态转换。这项工作还提出了一个控制器方案,该计划在模拟环境中显示了数千个时间步骤。这项工作还为早期研究人员提供了他们喜欢的算法和配置的基础。
飞行测试仍然是飞机开发或改装过程中必不可少的一步。现代固定翼飞机是高度复杂的系统,推动着空气动力学、推进和控制系统技术的发展。其中许多技术相互集成且相互依赖。当然,从 F-22 到 EF2000 的现代军用飞机推动着飞机可内置功能的极限。空中客车的 A3 10 和波音的 777 等商用运输机采用了许多最初用于军用飞机的飞机先进技术。飞机的复杂性不断增加,给参与这些飞行器飞行测试的人员带来了新的挑战。40 多年来,模拟在飞行测试中发挥了关键作用。随着飞机的复杂性不断提高,模拟的作用也不断增强。每个主要的飞机开发商,无论是商用还是军用,都在一定程度上依赖于模拟的使用。将这些模拟应用于飞行测试是飞机开发的一个重要方面。每年,世界各地都会举办数十场研讨会和会议,讨论模拟及其用途。随着计算机技术继续以加速的速度发展,模拟领域也随之不断扩大。不幸的是,很少有文字记录如何有效地使用模拟来支持飞行测试。
Artem Shmatko 1,3,*,Patel 1:4,5,6,*,Ramin Rahmanzade 4.5,红色4.5,Luke Friedrich Schrimmpf 4.5.7,Big 4.5,Henri Bogumil 4.5,Sybren L.N.5月8日,马丁·西尔·詹妮克(Martin Sill Jannik)11,13,大卫·鲁斯(David Reuss),克里斯蒂安·埃罗德·孟德(Christian Herold-Mende)9,技能M琼斯6:14,Stefan M. Pfister,Arnault Esparia-Sack 31,32,Pascal Varlet 31,32,Brandner 33,Xiangzhi Bai 2,Andreas von Deimling 4.5,
有20种不同类型的氨基酸,每个成熟的mRNA均由四种类型的氮基(A,U,G,C)组成。在三组组中,四个氮基碱的组合给出了64个密码子,即相同的氨基酸可以由多个裂纹编码。因此,遗传密码是退化的。
摘要。宽场成像仪(WFI)是高能天体物理学的高级望远镜(雅典娜)的两种焦平面仪器之一,ESA的下一个大型X射线天文台计划于2030年代初发射。当前的基线光环轨道在L2左右,并且正在考虑太阳 - 地球系统的第二个Lagrangian点。对于潜在的光环轨道,辐射环境,太阳能和宇宙质子,电子和Heions都将影响仪器的性能。对仪器背景的进一步关键贡献是由未关注的宇宙硬X射线背景产生的。重要的是要了解和估算预期的工具背景并研究措施,例如设计模式或分析方法,这可以改善预期的背景水平,以达到具有挑战性的科学要求(<5×10 - 3计数∕ cm 2 ∕ cm 2 kev kev s s in 2至7 kev)。通过考虑到L2处的质子通量的新信息,可以改善Geant4中进行的WFI背景模拟。此外,已对WFI仪器的模拟模型及其在Geant4模拟中采用的周围环境进行了完善,以遵循WFI摄像机的技术开发。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jatis.7.3.034001]
上午 11:30 55 分钟/1 小时 45 11 年级模拟考试 - 历史(试卷 2 - 亨利八世)/心理学(试卷 1)(BTEC 体育学生)/商业 - 针对错过考试的学生(FP/LS/LC-G/AB/AR)
摘要:我们提出了 BEHAVIOR-1K,一个以人为本的机器人综合模拟基准。BEHAVIOR-1K 包括两个部分,分别由“您希望机器人为您做什么?”这一广泛调查的结果指导和推动。第一个部分是定义 1,000 种日常活动,基于 50 个场景(房屋、花园、餐厅、办公室等),其中有 5,000 多个对象,并标注了丰富的物理和语义属性。第二个部分是 O MNI G IBSON,这是一个新颖的模拟环境,它通过逼真的物理模拟和刚体、可变形体和液体的渲染来支持这些活动。我们的实验表明,BEHAVIOR-1K 中的活动是长期的并且依赖于复杂的操作技能,这两者对于最先进的机器人学习解决方案来说仍然是一个挑战。为了校准 BEHAVIOR-1K 的模拟与现实之间的差距,我们提供了一项初步研究,研究如何在模拟公寓中使用移动机械手学到的解决方案转移到现实世界中。我们希望 BEHAVIOR-1K 的人性化本质、多样性和现实性能够使其对具身化 AI 和机器人学习研究有价值。项目网站:https://behavior.stanford.edu。