本文首先引入了模糊软度量空间的概念,然后定义了模糊软开球、模糊软有界集、模糊软序列收敛、模糊软连续函数从一个模糊软度量空间到另一个模糊软度量空间。本文的主要目的是研究这个空间,并研究模糊软度量空间的一些基本性质。
柯尔莫哥洛夫-所罗门诺夫-柴廷(Kolmogorov,简称 Kolmogorov)复杂度由 Solomonoff [ 1 ] 和 Kolmogorov [ 2 ] 独立提出,后来柴廷 [ 3 ] 也提出了这一复杂度。该复杂度基于可以模拟任何其他图灵机的通用图灵机的发现 [ 4 , 5 ]。单个有限字符串的柯尔莫哥洛夫复杂度是能够正确生成该字符串作为输出的通用图灵机的最短程序的长度,也是对字符串所含信息量的度量。已经证明,虽然存在多种图灵机,但最短程序的长度是不变的,在底层图灵机的选择下,其差异最多为一个加法常数 [ 6 ]。柯尔莫哥洛夫复杂度理论广泛应用于问答系统 [ 7 ]、组合学 [ 8 ]、学习理论 [ 9 ]、生物信息学 [ 10 ] 和密码学 [ 11 , 12 ] 等领域。1985 年,Deutsch [ 13 ] 引入量子图灵机作为量子计算机的理论模型。量子图灵机扩展了经典图灵机模型,因为它们允许在其计算路径上发生量子干涉。Bernstein 和 Vazirani [ 14 ] 表明量子图灵机在近似意义上具有通用性。最近,一些研究者提出了一些柯尔莫哥洛夫复杂度的量子版本。Vitányi [ 15 ] 提出了量子柯尔莫哥洛夫复杂度的定义,它度量近似量子态所需的经典信息量。Berthiaume 等人 [ 16 ] 提出了一种基于柯尔莫哥洛夫复杂度的量子柯尔莫哥洛夫复杂度定义。 [16] 提出了一种新的量子比特串量子柯尔莫哥洛夫复杂度定义,即通用量子计算机输出所需字符串的最短量子输入的长度。Zadeh [17] 提出了模糊计算的第一个公式,他基于图灵机和马尔可夫算法的模糊化,定义了模糊算法的概念。随后,Lee 和 Zadeh [18] 定义了模糊语言的概念。Santos [19] 证明了模糊算法和模糊图灵机之间的等价性。接下来,Wiedermann [20] 考虑了模糊计算的可计算性和复杂性。利用 Wiedermann 的工作,Bedregal 和 Figueira [21] 证明了不存在可以模拟所有模糊图灵机的通用模糊图灵机。随后,李[22,23]研究了模糊图灵机的一些变体。他证明了
防止刻板印象的威胁对于改善业务绩效至关重要。由于这种情况,企业必须采取必要的预防措施。但是,这些行动会影响企业的成本提高。对这些因素进行优先分析的文献研究数量非常有限。这种情况增加了对这些变量分析优先级的新研究的需求。因此,本研究旨在评估可持续商业环境中刻板印象威胁的因素。在第一阶段实施了一个人工智能模型来权衡专家。在以下阶段,在T-Spherical Fuzzy Dematel的帮助下评估了选定的标准。第三,使用不同的值进行了比较分析。最后,针对刻板印象的威胁,选定的行业被球形模糊的Ratgos对。可以在分析过程中确定专家的权重。这种情况对调查结果的有效性有很大的贡献。得出的结论是,培训活动对于最大程度地减少公司中刻板印象的威胁至关重要。
摘要提出了对绿色供应链管理(GSCM)实践的深入研究,从而描绘了其经济影响。该研究在多标准决策(MCDM)框架内应用模糊逻辑,以系统化供应链中绿色实践的评估和进步。放置模糊逻辑与MCDM的集成以完善评估的精度。使用基于线性编程的模糊多属性边界近似区比较(MABAC)方法,该方法以评估绿色供应商为中心。这项研究通过量化经济优点,即成本效率,提高市场生产率和品牌形象的改善来推进GSCM的讨论。实际应用的证据证明了GSCM在增强环境可持续性和产生巨大经济增长方面的双重好处。(2023年6月收到,于2023年8月接受。本文与作者一起1个月进行了1个修订。)
智利校园Kasper Building Austral De Chile大学建筑与城市主义研究所,智利瓦尔迪维亚校园Isla Teja。 div>5 div>
摘要。近年来,混合软计算方法的使用表明,在各种应用中,几种技术的协同作用优于单个技术。例如,使用神经模糊系统和进化模糊系统将模糊系统的近似推理机理与神经网络和进化算法的学习能力融合在一起。进化神经系统融合了神经计算方法与进化计算的解决方案搜索能力。这种混合方法保留了可以通过三个基本软计算范式完全集成来克服的局限性,这导致了进化的神经模糊系统。本章的目的是提供混合软计算系统的描述,并特别注意进化算法和神经网络的联合使用,以便将模糊系统具有学习和适应性功能。在介绍基本软计算范式之后,考虑了各种形式的杂交,这导致了进化神经模糊系统。本章还介绍了一种特定的方法,该方法共同使用神经学习和遗传优化来从给定数据中学习模糊模型,并优化它以进行准确性和可解释性。
应变,按下尽可能多的液体。您应该有大约1汤匙液体。使用前冷却5分钟。为贝尔纳斯酱,将黄油轻轻融化在锅中。站立30秒钟,直到乳白色固体定居在底部。倒出175克澄清的黄油,丢弃剩下的乳白色。热时在此食谱中使用。将蛋黄,注入醋和盐放入一个高大的狭窄容器中,搅拌器棒一直适合底部。短暂闪电战。将棒搅拌器高高地慢慢淋上澄清的黄油,大约一分钟。添加了所有黄油后,闪电队再闪电10秒钟,上下移动棍子。调整一致性,加入1汤匙水,然后闪电以掺入。根据需要添加更多的水,一次每次1茶匙,直到贝尔纳斯酱是浓而柔软的酱汁,而不是流鼻涕。搅拌龙龙和cher。立即使用或在温暖的地方保持温暖,直到需要。
© 作者 2024。开放存取 本文根据知识共享署名 4.0 国际许可证进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可证的链接,并指明是否做了更改。本文中的图像或其他第三方资料包含在文章的知识共享许可证中,除非资料的致谢中另有说明。如果资料未包含在文章的知识共享许可证中,并且您的预期用途不被法定规定允许或超出了允许的用途,您将需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 https://creativecommons.org/licenses/by/4.0/。
摘要 — 发展认知神经科学研究面临的挑战不仅与其人群(可能不太愿意合作的婴儿和儿童)有关,还与能够非侵入性记录大脑活动的神经成像技术选择有限有关。例如,磁共振成像 (MRI) 研究不适合发展认知研究,因为它们要求参与者在嘈杂的环境中长时间保持静止。在这方面,功能性近红外光谱 (fNIRS) 是一种快速出现的事实上的神经成像标准,用于记录婴儿的大脑活动。然而,缺乏相关的解剖图像和用于 fNIRS 数据分析的标准技术框架仍然是深入了解大脑发育工作原理的重大障碍。为此,本研究提出了一种可解释人工智能 (XAI) 系统,用于婴儿 fNIRS 数据,使用由遗传算法 (GA) 2 型模糊逻辑系统 (FLS) 驱动的多变量模式分析 (MVPA) 对不同刺激引起的婴儿大脑活动进行分类。这项工作有助于为透明的 fNIRS 数据分析奠定基础,该分析有可能使研究人员能够将分类结果映射到相应的大脑活动模式,这对于理解人类大脑发育如何发挥作用至关重要。索引术语 — 可解释人工智能、2 型模糊系统、遗传算法、多变量模式分析、发展认知神经科学
对具有优异机械性能的材料的需求不断增长,推动了多种高强度耐热合金的工程设计。为了克服传统加工方法的缺点,电火花加工 (EDM) 被证明是一种切割此类材料的更可行方法。然而,其不同输入参数的不当设置可能会严重影响加工部件的表面完整性并导致刀具过度磨损。多准则决策 (MCDM) 方法已成为一种有效的数学工具,能够处理多个输入因素及其与众多相互冲突的响应的相互作用,以找出理想的 EDM 工艺参数值。在本文中,提出了两种最近推出的 MCDM 方法,即按中位数相似度排序替代方案 (RAMS) 和按迹到中位数指数排序替代方案 (RATMI),并结合直觉模糊集 (IFS) 以考虑到不同利益相关者意见中固有的不确定性,以在单一框架中优化两个 EDM 工艺。对于第一个 EDM 工艺,不同输入因素的理想组合是放电电流 = 3A、脉冲开启时间 = 10 µs、脉冲关闭时间 = 5 µs 和铜作为工具材料。另一方面,对于第二个工艺,EDM 参数的两个组合之间存在联系,即峰值电流 = 10 A、脉冲开启时间 = 500 µs 和间隙电压 = 45 V;峰值电流 = 10 A、脉冲开启时间 = 1000 µs 和间隙电压 = 50 V。此外,还对这两个工艺进行了与其他知名 MCDM 工具的比较分析和通过改变响应重要性进行的敏感性分析研究,以验证使用所提出的 IF-RAMS 和 IF-RATMI 方法获得的等级的可靠性和一致性。