学分:03先决条件:零提供:本科学位(包括副学士学位)的位置:1 - 4个学期类型:强制性领域:所有描述定量推理(i)都是入门级的大学生课程,侧重于与定量概念和分析相关的基本原理。该课程旨在使学生熟悉数学和统计的基本概念,并发展学生分析和解释定量信息的能力。通过理论概念和实践练习的结合,本课程还将使学生能够培养其定量扫盲和解决问题的技能,同时有效地扩大其学术视野和对特定主要 /研究领域的知识的广泛知识。课程学习成果在本课程结束时,学生应有:1。基本的数值素养使他们能够使用数字,了解其含义并准确呈现数据; 2。理解基本的数学和统计概念; 3。基本能力解释以各种格式显示的数据,包括但不限于表,图形,图表和方程等。教学大纲1。数字素养数字系统和基本算术操作; 单位及其转换,面积,周长和体积; 费率,比率,比例和百分比; 数据的类型和来源; 测量量表; 数据的表格和图形表示; 使用数字知识进行定量推理练习。2。基本数学概念几何基础(线,角度,圆,多边形等)); 设置及其操作; 关系,功能及其图; 指数,保理和简化代数表达式; 线性和二次方程和不平等的代数和图形解; 使用基本数学概念进行定量推理练习。
学分:03先决条件:定量推理(i)发行:本科学位(包括副学士学位)的位置:2 - 4个学期类型类型:强制性领域:所有描述定量推理(II)都是一条顺序的本科课程,侧重于与数学和统计学分析技术的逻辑上的逻辑上的介绍,并适用于数学和统计学分析技术,以适应数学和统计学分析技术,并适应模型分析技术,现代世界的复杂性。该课程旨在使学生熟悉中断和分析数值数据所需的定量概念和技术,并在学生中灌输能力的逻辑推理来构建和评估参数,识别谬论,系统地思考。将定量推理的先决条件(i)作为其基础,本课程将使学生能够进一步进行定量,逻辑和关键的推理能力,以补充其特定的主要 /研究领域。课程学习成果在本课程结束时,学生应有:1。对逻辑和逻辑推理的理解:2。了解基本的定量建模和分析; 3。逻辑推理技能和能力将其应用于解决定量问题并评估论点; 4。能够通过适当的计算工具进行批判性评估定量信息以做出证据决策的能力。
摘要 - 多机器人同时本地化和映射(SLAM)使机器人团队通过依靠环境的共同地图来实现协调的任务。通过对机器人观测的集中处理来构建地图是不可取的,因为它会产生单个失败点并重新存在预先存在的基础架构和显着的通信吞吐量。本文将多机器人对象猛击制定为通信图上的变异推理问题,受不同机器人主导的对象估计的共识约束。为了解决该问题,我们开发了一种分布式的镜面下降算法,并在通信机器人之间实施了正则化的共识。使用算法中的高斯分布,我们还为多机器人对象大满贯提供了分布式多状态约束Kalman滤波器(MSCKF)。对真实和模拟数据的实验表明,与单个机器人大满贯相比,我们的方法改善了轨迹和对象估计,同时与集中的多机器人大满贯相比,在大型机器人团队中实现更好的缩放。
神经算法推理旨在通过学习模型模仿经典算法的执行来捕获神经网络的计算。虽然共同体系结构具有足够的表现力,可以在权重空间中包含正确的模型,但当前的神经推理者正在努力概括分布数据。另一方面,经典计算不受分布变化的影响,因为它们可以描述为离散计算状态之间的过渡。在这项工作中,我们建议迫使神经推理者将执行轨迹保持为有限的预定状态的组合。为了实现这一目标,我们将离散和连续数据流分开,并描述它们之间的相互作用。在算法的状态转换上接受了监督训练,此类模型能够与原始算法完全保持一致。为了证明这一点,我们在多种算法问题上评估了我们的方法,并在单件任务和多任务设置中获得完美的考试成绩。此外,提出的架构选择使我们能够证明任何测试数据的学习算法的正确性。
© 作者 2024。开放存取 本文根据知识共享署名 4.0 国际许可证进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可证的链接,并指明是否做了更改。本文中的图像或其他第三方资料包含在文章的知识共享许可证中,除非资料的致谢中另有说明。如果资料未包含在文章的知识共享许可证中,并且您的预期用途不被法定规定允许或超出了允许的用途,您将需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 https://creativecommons.org/licenses/by/4.0/。
摘要 — 发展认知神经科学研究面临的挑战不仅与其人群(可能不太愿意合作的婴儿和儿童)有关,还与能够非侵入性记录大脑活动的神经成像技术选择有限有关。例如,磁共振成像 (MRI) 研究不适合发展认知研究,因为它们要求参与者在嘈杂的环境中长时间保持静止。在这方面,功能性近红外光谱 (fNIRS) 是一种快速出现的事实上的神经成像标准,用于记录婴儿的大脑活动。然而,缺乏相关的解剖图像和用于 fNIRS 数据分析的标准技术框架仍然是深入了解大脑发育工作原理的重大障碍。为此,本研究提出了一种可解释人工智能 (XAI) 系统,用于婴儿 fNIRS 数据,使用由遗传算法 (GA) 2 型模糊逻辑系统 (FLS) 驱动的多变量模式分析 (MVPA) 对不同刺激引起的婴儿大脑活动进行分类。这项工作有助于为透明的 fNIRS 数据分析奠定基础,该分析有可能使研究人员能够将分类结果映射到相应的大脑活动模式,这对于理解人类大脑发育如何发挥作用至关重要。索引术语 — 可解释人工智能、2 型模糊系统、遗传算法、多变量模式分析、发展认知神经科学
对具有优异机械性能的材料的需求不断增长,推动了多种高强度耐热合金的工程设计。为了克服传统加工方法的缺点,电火花加工 (EDM) 被证明是一种切割此类材料的更可行方法。然而,其不同输入参数的不当设置可能会严重影响加工部件的表面完整性并导致刀具过度磨损。多准则决策 (MCDM) 方法已成为一种有效的数学工具,能够处理多个输入因素及其与众多相互冲突的响应的相互作用,以找出理想的 EDM 工艺参数值。在本文中,提出了两种最近推出的 MCDM 方法,即按中位数相似度排序替代方案 (RAMS) 和按迹到中位数指数排序替代方案 (RATMI),并结合直觉模糊集 (IFS) 以考虑到不同利益相关者意见中固有的不确定性,以在单一框架中优化两个 EDM 工艺。对于第一个 EDM 工艺,不同输入因素的理想组合是放电电流 = 3A、脉冲开启时间 = 10 µs、脉冲关闭时间 = 5 µs 和铜作为工具材料。另一方面,对于第二个工艺,EDM 参数的两个组合之间存在联系,即峰值电流 = 10 A、脉冲开启时间 = 500 µs 和间隙电压 = 45 V;峰值电流 = 10 A、脉冲开启时间 = 1000 µs 和间隙电压 = 50 V。此外,还对这两个工艺进行了与其他知名 MCDM 工具的比较分析和通过改变响应重要性进行的敏感性分析研究,以验证使用所提出的 IF-RAMS 和 IF-RATMI 方法获得的等级的可靠性和一致性。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
15.补充说明 这项工作是在任务 AM-A-00-HRR-519 下进行的。16.摘要:在 FAA 民用航空医学研究所的可重构通用航空模拟器(配置为 Piper Malibu)中评估了一种模糊逻辑“性能控制”系统,该系统提供包络保护和对空速、垂直速度和转弯速率的直接控制。在一项飞行任务中评估了 24 个人(高飞行时间飞行员、低飞行时间飞行员、学生飞行员和非飞行员各 6 人)的表现,该任务要求参与者跟踪从起飞到着陆的 3-D 航线,由图形路径主飞行显示器表示。还使用传统控制系统收集了每个受试者的基线表现。所有参与者都操作每个系统,对其功能进行了最少的解释,并且没有接受过任何培训。结果表明,模糊逻辑性能控制减少了变量误差和超调,新手学习所需的时间更少(从达到稳定性能所需的时间可以看出),使用起来所需的努力更少(减少了控制输入活动),并且受到所有群体的青睐。