本研究调查了与北大西洋 (NAT) 使用半度航路点坐标有关的已报告横向飞行路径偏差。此类航路点在驾驶舱显示器上的显示标签可能不明确,这可能会导致机组人员出错。我们探讨了问题的严重程度和潜在的缓解措施。我们还审查了与驾驶舱数据输入相关的文献,以便输入和验证航线。这包括对美国国家参考系统 (NRS) 命名约定的研究的审查,该系统是一种类似于 NAT 使用的网格结构。然后,我们分析了 2017 年至 2019 年 6 月 NAT 中报告的横向偏差。我们仅发现 8 次偏差有与航路点显示标签相关的证据:3 次偏差大于 10 海里,5 次偏差小于 10 海里,空中交通管制进行了干预以防止更大的偏差。NAT 操作的指导文件已经解释了防止横向偏差的有效机组策略。我们没有进一步的驾驶舱程序建议。但是,我们确实探索了与其他潜在缓解措施相关的益处和注意事项。我们还讨论了对美国基于轨迹的运营 (TBO) 的潜在影响,因为 TBO 可能会使用半度航路点。
本研究调查了与在北大西洋 (NAT) 使用半度航路点坐标有关的已报告横向飞行路径偏差。此类航路点在驾驶舱显示器上的显示标签可能不明确,这可能会导致机组人员失误。我们探讨了问题的严重程度和潜在的缓解措施。我们还审查了与航线输入和验证相关的驾驶舱数据输入文献。其中包括对美国国家参考系统 (NRS) 命名约定的研究的审查,该系统是一种类似于 NAT 上使用的网格结构。然后,我们分析了 2017 年至 2019 年 6 月 NAT 报告的横向偏差。我们只发现 8 次偏差有与航路点显示标签相关的证据:3 次偏差大于 10 海里,5 次偏差小于 10 海里,空中交通管制进行了干预以防止更大的偏差。NAT 操作的指导文件已经解释了防止横向偏差的有效机组策略。我们没有进一步的驾驶舱程序建议。不过,我们确实探讨了其他潜在缓解措施的好处和注意事项。我们还讨论了对美国基于轨迹的作战 (TBO) 的潜在影响,因为 TBO 可能会使用半度航路点。
• 攻击者利用与受害者物理位置相距一定距离的 GPS 输入进行欺骗 • 旨在最大化 MSF 输出中相对于无攻击的横向偏差 • 攻击目标:导致受害者驶离道路或走上错误的道路
• 攻击者利用与受害者物理位置相距一定距离的 GPS 输入进行欺骗 • 旨在最大化 MSF 输出中相对于无攻击的横向偏差 • 攻击目标:导致受害者驶离道路或走上错误的道路
• 攻击者利用与受害者物理位置相距一定距离的 GPS 输入进行欺骗 • 旨在最大化 MSF 输出中相对于无攻击的横向偏差 • 攻击目标:导致受害者驶离道路或走上错误的道路
• 攻击者利用与受害者物理位置相距一定距离的 GPS 输入进行欺骗 • 旨在最大化 MSF 输出中相对于无攻击的横向偏差 • 攻击目标:导致受害者驶离道路或走上错误的道路
1.1.1 未来空中导航系统特别委员会 (FANS) 发现,多年来指示所需导航能力最常用的方法是规定强制携带某些设备。这限制了现代机载设备的最佳应用。此外,随着卫星的出现,这种方法将迫使国际民用航空组织进行繁琐的选择过程。为了克服这些问题,委员会提出了所需导航性能能力 (RNPC) 的概念。FANS 将 RNPC 定义为一个参数,该参数描述了与指定或选定航迹的横向偏差以及基于适当遏制水平的沿航迹定位精度。虽然这个概念从一开始就避免了 ICAO 在竞争系统之间进行选择的需要,但它并不妨碍 ICAO 处理国际上使用的导航技术。RNPC 概念已获得国际民航组织理事会的批准,并被指派给分离总体概念审查小组 (RGCSP) 进行进一步阐述。1990 年,RGCSP 注意到能力和性能截然不同,空域规划取决于测量性能而非设计能力,因此将 RNPC 改为所需导航性能 (RNP)。
硅环谐振器调制器(RRMS)具有减少足迹和功耗并增加波长多路复用(WDM)发射器的调制速度的巨大潜力。但是,RRM的光学特性对制造变化高度敏感,这使它们在设计量生产或大量WDM通道方面具有挑战性。在这项工作中,我们提供了一种RRM设计,该设计经过专门设计和实验验证,以降低对制造变化的敏感性。这包括对抗性过度和不足的暴露(±30 nm横向偏差)的敏感性分析以及耦合部分内蚀刻深度变化(±10 nm深度变化)的敏感性分析。对于我们的设计,偏离目标耦合强度的偏差将两倍提高。使用标准的CMOS兼容过程在Soi晶圆上制造了提议的设备。我们演示了以上灭绝比以上的RRM,OMA更好,即-7 dB(2 V pp)和29 GHz的电光带宽,仅在32 GB/s下显示仅受我们的测量设置的开放式眼睛图。测得的耦合系数与模拟值非常吻合。此外,我们应用了相同的设计修改来实现低掺杂的RRM和基于环的添加 - 滴滴 - 磁材(OADMS)。模拟和测量的耦合系数之间的一致性(我们确定为设备性能可变性的主要来源),进一步证实了我们的设计修改的有效性。这些结果表明,可以利用所提出的设计,以大规模地,尤其是在WDM系统中的大规模制造基于谐振的设备。
摘要 小鼠大脑是迄今为止研究最深入的哺乳动物大脑,但其细胞结构的基本测量方法仍然不清楚。例如,量化细胞数量以及性别、品系和细胞密度和体积的个体差异之间的相互作用对于许多区域而言是遥不可及的。Allen 小鼠大脑连接项目生成了数百个大脑的高分辨率全脑图像。虽然这些图像是为了不同的目的而创建的,但它们揭示了神经解剖学和细胞结构的细节。在这里,我们使用这个群体系统地表征小鼠大脑中每个解剖单元的细胞密度和体积。我们开发了一种基于 DNN 的分割流程,该流程使用图像的自发荧光强度来分割细胞核,即使在最密集的区域(例如齿状回)内也是如此。我们将我们的流程应用于来自 C57BL/6J 和 FVB.CD1 品系的 507 个雄性和雌性大脑。从全球来看,我们发现整体脑容量的增加不会导致所有区域的均匀扩张。此外,特定区域的密度变化通常与该区域的体积呈负相关;因此,细胞计数并不随体积线性变化。许多区域(包括多个皮质区域的 2/3 层)表现出明显的横向偏差。我们确定了特定于菌株或特定于性别的差异。例如,男性往往在扩展的杏仁核和下丘脑区域(MEA、BST、BLA、BMA 和 LPO、AHN)中拥有更多细胞,而女性在眼眶皮质 (ORB) 中拥有更多细胞。然而,个体间变异性始终大于单个限定词的效应大小。我们将此分析的结果作为社区的可访问资源提供。