揭示了疾病和健康的全身效应,需要一种整体方法,该方法主要围绕着良好的,可直接确定的分子关系,例如蛋白质合成级联和表观遗传机制。在涉及394个个体的这项研究中,我们发现,使用临床数据,肠道微生物丰度,血液免疫细胞谱,血液转录组和血液T细胞受体数据,通常不会结合人类生物学功能的分支直接联系。与当前的范式相反,我们证明了免疫型和肠型是正交的,可能在维持体内平衡方面起着独特的作用,只能通过血液转录组桥接。我们还鉴定了两个不同的炎症特征:第一个由干扰素信号传导和另一个以非病毒,NF-KB和IL-6标记为特征的。最后,我们提供了引人注目的数据,显示了具有健康的免疫型和转录型模式的Ruminococcaceae和Christensenellaceae细菌的密切关联,从而强调了它们在免疫健康中的潜在作用。
摘要 分布式传感协议使用局部传感节点网络来估计网络的全局特征,例如局部可检测参数的加权平均值。在无噪声情况下,节点共享的连续变量 (CV) 多体纠缠可以提高参数估计的精度,相对于没有共享纠缠的网络所能达到的精度;对于纠缠协议,均方根估计误差随传感节点的数量 M 而呈 1 / M 的比例变化,即所谓的海森堡缩放比例,而对于没有纠缠的协议,误差则呈 M 1 的比例变化。然而,在存在损耗和其他噪声源的情况下,虽然多体纠缠在感测位移和相位方面仍然具有一些优势,但精度随 M 的比例变化并不那么有利。在本文中,我们表明使用 CV 纠错码可以增强传感协议对缺陷的鲁棒性,并恢复海森堡缩放比例至中等 M 值。此外,之前的分布式传感协议只能测量单个正交,而我们构建了一个可以同时感测两个正交的协议。我们的工作证明了 CV 误差校正码在现实传感场景中的价值。
摘要 分布式传感协议使用局部传感节点网络来估计网络的全局特征,例如局部可检测参数的加权平均值。在无噪声情况下,节点共享的连续变量 (CV) 多体纠缠可以提高参数估计的精度,相对于没有共享纠缠的网络所能达到的精度;对于纠缠协议,均方根估计误差随传感节点的数量 M 而呈 1 / M 的比例变化,即所谓的海森堡缩放比例,而对于没有纠缠的协议,误差则呈 M 1 的比例变化。然而,在存在损耗和其他噪声源的情况下,虽然多体纠缠在感测位移和相位方面仍然具有一些优势,但精度随 M 的比例变化并不那么有利。在本文中,我们表明使用 CV 纠错码可以增强传感协议对缺陷的鲁棒性,并恢复海森堡缩放比例至中等 M 值。此外,之前的分布式传感协议只能测量单个正交,而我们构建了一个可以同时感测两个正交的协议。我们的工作证明了 CV 误差校正码在现实传感场景中的价值。
锥形束计算机断层扫描(CBCT)和全景X射线是牙科医疗保健中最常用的成像方式。CBCT可以产生患者头部的三维视图,从而为临床医生提供更好的诊断能力,而全景X射线可以在单个图像中捕获整个上颌面区域。如果CBCT已经可用,则可以合成全景X射线,从而避免立即进行额外的扫描和额外的辐射暴露。现有方法着重于描绘沿该拱门的近似牙齿拱门并创建正交的投影。但是,这种牙齿拱门提取没有黄金标准,并且此选择会影响合成X射线的质量。为了避免此类问题,我们提出了一种新的方法,用于使用模拟的投影几何形状和动态旋转中心合成不同头部CBCT的全景X射线。我们的方法有效地从CBCT中综合了全景,即使是牙齿缺失或不存在的患者,并且在存在严重的金属植入物的情况下。我们的结果表明,这种方法可以生成高质量的全景图像,而与CBCT扫描仪几何形状无关。
定量SEM/EDS分析的原位标本方向方法的开发和验证粘土Klein 1*,Faith Corman 1,Joshua Homan 1,Brady Jones 1,Brady Jones 1,Abbeigh Schroeder 1,Heavenly Duley 1和Chunfei Li 11。宾夕法尼亚州克拉翁大学,化学,数学和物理系,美国宾夕法尼亚州克拉里昂 *通讯作者:clay.w.klein@gmail.com定量分析具有扫描电子/能量分散式X射线/能量的标本元素组成的元素组成,以确保X射线光谱(SEM/EDIMENS)不需要一定的情况。错误。特别是,为了准确的定量EDS分析,标本表面必须足够平坦,并且与SEM的电子束具有正交性[1,2]。在本演示文稿中,我们报告了一种在SEM中,肉眼看不见的足够平坦的微观表面的方法的开发和验证,使得表面与传入的电子束是正交的。该方法基于使用多个SEM图像来测量两个点之间的距离的变化,而两个点之间的界线垂直于SEM倾斜轴,在不同的倾斜角度上。该方法利用了多个SEM图像和测量值,它为我们当前在开发和统计上分析试样方向过程中使用的工具提供了一个良好的测试基础,比以前的方法更有效,更精确[3]。SEM具有两个操作,可以实现对象的原位操纵:旋转和倾斜。要应用该方法,我们使用了以随机旋转和倾斜角度定向的宏观平坦样本。2。[4]。旋转操作通过平行于传入的电子束(定义为轴)的轴的角度旋转样品,而倾斜操作则通过围绕轴(轴)垂直于旋转轴的角度倾斜样品。对于以某个任意角度倾斜的平面,我们将适当的角度定义为 - 参数空间中的坐标,使得平面的表面与电子束正交。一旦确定了足够平坦的平面,我们可以通过以下步骤确定适当的角度:(1)以增量旋转角度进行一系列SEM图像,((2)用一定角度倾斜样品,(3)重复(3)重复(1)和(4)度量,对于每个旋转角度,在斜角和直至图像中的两个特征之间的距离。可以通过形成倾斜度的比率并在每个旋转角度以测量为单位,并将理论上确定的曲线与数据拟合,从而计算出适当的角度。具有50 m的视野,每10°旋转以0°,20°和-20°旋转每10°旋转。测量是在SEM图像上进行的,如图1形成两个点之间的距离之比。在图中显示了这些测量结果的曲线使用最小二乘曲线拟合程序,确定最佳和值。图中还显示了以适当角度定向的样品的图片2;我们看到表面似乎与电子束的方向是正交的。
b'对于任何一对纯状态| \ xcf \ x88 \ xe2 \ x9f \ xa9,| \ xcf \ x86 \ xe2 \ x9f \ xa9 \ xe2 \ x88 \ x88h。但是,如果| \ xe2 \ x9f \ xa8 \ xcf \ x88 | \ xcf \ x86 \ xe2 \ x9f \ xa9 | = 0或| \ xe2 \ x9f \ xa8 \ xcf \ x88 | \ xcf \ x86 \ xe2 \ x9f \ xa9 | = 1导致矛盾,因为纯净的状态都不满足。请注意,此论点实际上意味着更强有力的陈述:没有统一的u \ xe2 \ x88 \ x88 u(h)可以满足(1)对独特的,非正交的纯态| \ xcf \ x88 1 \ xe2 \ x9f \ xa9,| \ xcf \ x88 2 \ xe2 \ x9f \ xa9 \ xe2 \ x88 \ x88h。非正交性的假设在这里至关重要,例如,对某些正交纯状状态满意(1)。以前的参数似乎并不完全笼统,因为可能存在更多的一般方案来复制量子信息。最通用的操作将是一些量子通道T:B(H)\ Xe2 \ X86 \ X92 B(H \ Xe2 \ X8A \ X97H)满足Tr \ Xe2 \ X8A \ X8A \ X97 ID B(H) \ xe2 \ x97 \ xa6 t = id B(h)。(2)'
由于我们的主要目标是统一和关联前期工作中研究的几种不同模型,因此我们需要引入相当数量的计算模型。我们建议读者在阅读介绍时,手边要有图 10(最后一页)中的路线图,以便保持清晰的视野,并在需要时再次查阅本概述。我们从第 1.3 节开始我们的冒险,介绍图 10 最顶部的经典模型,然后将它们与第 1.4 节中的 LCL 当前格局联系起来。接下来,我们将在第 1.5 节中逐步研究量子以及有界依赖和非信号模型,之后我们将进行第一次休息。此时,我们熟悉了图 10 的上半部分,并准备在第 1.6 节中陈述与有限依赖过程的对称性破坏相关的第一个主要贡献。然后,在第 1.7 节中,我们将转向乍一看似乎完全不相关的模型。它们处理顺序、动态和在线设置中的局部性。然而,正如我们将在 1.8 节中看到的那样,我们可以将所有这些模型连接到一个层次结构中,看似正交的模型夹在确定性局部和随机在线局部之间,我们可以证明各种强有力的结果,将这两个极端之间的复杂性景观联系起来。
摘要:神经系统的电活动是意识现象学的基础。感官知觉触发与环境的信息/能量交换,但大脑的反复激活保持静止状态,参数恒定。因此,感知形成一个封闭的热力学循环。在物理学中,卡诺发动机是一种理想的热力学循环,它将热量从热库转化为功,或者反过来,需要功将热量从低温库转移到高温库(逆卡诺循环)。我们通过吸热逆卡诺循环分析高熵大脑。其不可逆激活为未来定位提供了时间方向性。神经状态之间的灵活转移激发了开放性和创造力。相反,低熵静止状态与可逆激活平行,可逆激活通过重复思考、悔恨和遗憾强加过去的焦点。放热卡诺循环会降低精神能量。因此,大脑的能量/信息平衡形成了动机,被感知为立场或负面情绪。我们的工作从自由能原理的角度分析了积极和消极情绪以及自发行为。此外,电活动、思想和信念适合于时间组织,这是与物理系统正交的条件。在此,我们提出,对情绪热力学起源的实验验证可能会启发更好的精神疾病治疗方案。
光同源性检测已被广泛用于测量字段正交的连续变量(CV)量子信息处理。在本文中,我们探讨了在“光子计数”模式下操作共轭同型检测系统以实现离散变量(DV)量子密钥分布(QKD)的可能性。共轭同源检测系统由光束分离器组成,然后是两个光学同伴检测器,可以同时测量传入量子状态的一对共轭四倍体x和p。在经典电动力学中,x 2 + p 2与输入光的能量(光子数)成正比。在量子操作中,X和P不上交,因此上述光子数测量本质上是嘈杂的。这意味着QKD标准安全证明的盲目应用可能会导致模拟性能。我们通过利用拟议检测方案的两个特殊特征来克服这一障碍。首先,外部对手不能操纵与真空浮游相关的基本检测噪声。第二,重建接收器末端的光子数分布的能力可以对对手的可能攻击施加其他约束。为例,我们使用共轭同胞检测来研究BB84 QKD的安全性,并通过数值模拟评估其性能。这项研究可以基于基于单光子检测和基于相干检测的CV-QKD的良好DV-QKD的互补,为新的QKD方案开辟了大门。
摘要:光点击反应结合了光驱动过程和传统点击化学的优势,已在表面功能化、聚合物共轭、光交联和蛋白质标记等多个领域得到应用。尽管取得了这些进展,但大多数光点击反应对紫外光的依赖性对其普遍应用造成了严重障碍,因为这种光可能会被系统中的其他分子吸收,导致其降解或发生不必要的反应。然而,开发一种简单有效的系统来实现红移光点击转换仍然具有挑战性。在这里,我们引入了三重态-三重态能量转移作为一种快速而选择性的方式来实现可见光诱导的光点击反应。具体而言,我们表明,在催化量(少至 5 mol%)的光敏剂存在下,9,10-菲醌 ( PQ s) 可以与富电子烯烃 ( ERA ) 有效反应。光环加成反应可以在绿光(530 nm)或橙光(590 nm)照射下实现,与经典的PQ-ERA体系相比,红移超过100 nm。此外,通过组合适当的反应物,我们建立了正交的蓝光和绿光诱导的光点击反应体系,其中产物的分布可以通过选择光的颜色来精确控制。