过去 30 年来,人们提出了许多用于建模断裂的正则化公式,包括日益流行的相场模型。这些技术中的大多数都是针对拉伸主导的失效场景量身定制的。它们可靠地扩展到可以预测一般条件下的失效并且不仅适用于脆性材料也适用于准脆性材料的一般模型仍处于起步阶段。拟议的项目将探索此类扩展的途径,并解决与一般三轴应力状态下正则化失效模型的校准和验证、边界(包括非凸边界)的影响、局部过程区的结构和演变、具有非关联流动规则的塑性模型的正则化、非局部性的物理背景、相互作用缺陷的微观-宏观尺度转变等相关的未解决问题。
摘要:我们将非对称量子假设检验中的量子 Stein 引理扩展到复合零假设和备择假设。作为我们的主要结果,我们表明,用于检验量子态凸组合 ρ ⊗ n 与量子态凸组合 σ ⊗ n 的渐近误差指数可以写成正则化的量子相对熵公式。我们证明一般来说需要这样的正则化,但也讨论了我们的公式及其扩展变为单字母的各种设置。这包括从假设检验的角度对相干性相对熵的操作解释。为了证明,我们从经典概率分布的复合 Stein 引理开始,并使用量子熵的基本性质将结果提升到非交换设置。最后,我们的发现还意味着在正则化量子相对熵方面,条件量子互信息的可恢复性下限有所改进——具有明确和通用的恢复图。
理论介绍;有限状态机(FSM):FSM 介绍、FSM 示例、正则语言上的操作、非确定性 FSM 介绍、非确定性 FSM 的形式定义、确定性和非确定性 FSM 的等价性;正则语言:正则操作的闭包、正则表达式、正则表达式与正则语言的等价性、正则语言的抽水引理、正则语言总结;上下文无关语法和语言(CFG 和 CFL):CFG 和 CFL 介绍、CFG 示例、CFL 的种类、CFL 的事实;上下文相关语言:乔姆斯基范式、乔姆斯基层次结构和上下文相关语言、CFL 的抽水引理;下推自动机(PDA):PDA 介绍、CFG 和 PDA 的等价性、从 CFG 和 PDA 的等价性得出结论;图灵机 (TM):TM 简介、TM 示例、TM 定义和相关语言类、Church-Turing 论题、TM 编程技术、多带 TM、TM 中的不确定性、TM 作为问题求解器、枚举器;可判定性:可判定性和可判定问题、对于 DFA 的更多可判定问题、有关 CFL 的问题、通用 TM、无穷大 - 可数和不可数、不可图灵识别的语言、停机问题的不可判定性、不可图灵识别的语言、可归约性 - 一种证明不可判定性的技术、停机问题 - 通过归约证明、可计算函数、TM 的等价性、将一种语言归约成另一种语言、后对应问题、PCP 的不可判定性、线性边界自动机;递归:打印自身的程序、编写自身描述的 TM、递归定理、递归定理的结果、不动点定理;逻辑:一阶谓词逻辑 - 概述、真值(含义和证明)、真实陈述和可证明陈述、哥德尔不完备定理;复杂性:时间复杂度和大 O 符号、计算算法的运行时间、使用不同计算模型的时间复杂度、时间复杂度类 P 和 NP、NP 的定义和多项式可验证性、NP 完备性、SAT 是 NP 完备的证明、空间复杂度类
摘要。随着深度学习 (DL) 的进步,人们对可再生能源产量预测的关注度日益增加。可再生能源固有的多变性和预测方法的复杂性要求可再生能源领域采用稳健的方法,例如 DL 模型。与传统机器学习 (ML) 相比,DL 模型更受欢迎,因为它们可以捕捉可再生能源数据集中复杂的非线性关系。本研究通过比较 DL 框架内的各种方法和训练/测试比率,研究了影响 DL 技术准确性的关键因素,包括采样和超参数优化。使用结合了来自 12 个地点的天气和光伏电力输出数据的数据集,评估了七种机器学习方法——LSTM、Stacked LSTM、CNN、CNN-LSTM、DNN、时间分布式 MLP (TD-MLP) 和自动编码器 (AE)。应用早期停止、神经元丢失和 L1/L2 正则化等正则化技术来解决过度拟合问题。结果表明,早期停止、dropout 和 L1 正则化的组合对于减少具有较大训练集的 CNN 和 TD-MLP 模型中的过度拟合效果最佳,而早期停止、dropout 和 L2 正则化的组合对于减少具有较小训练集的 CNN-LSTM 和 AE 模型中的过度拟合效果最有效。
近年来,非时间序相关器 (OTOC) 作为量子信息扰乱的诊断方法得到了广泛研究。在本文中,我们研究了正则化有限温度 OTOC 的量子信息理论方面。我们介绍了二分正则化 OTOC (BROTOC) 的分析结果:在二分上支持的随机幺正上平均的正则化 OTOC。我们表明 BROTOC 有几个有趣的特性,例如,它量化了相关热场双态的纯度和解析连续时间演化算子的“算子纯度”。在无限温度下,它减少到 1 减去时间演化算子的算子纠缠。在零温度极限下对于非退化哈密顿量,BROTOC 探测基态纠缠。通过计算长期平均值,我们表明 BROTOC 的平衡值与本征态纠缠密切相关。最后,我们用数值方法研究了各种物理相关的哈密顿模型的 BROTOC 平衡值,并评论了其区分可积动力学和混沌动力学的能力。
4 正则量化:玻色子 17 4.1 海森堡群及其表示 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
作用 β 在 S 上是传递的,并将其变成齐次流形[2-5]。因此,U(H) 正则作用的基本向量场形成 GL(H) 作用的基本向量场代数的李子代数。[6] 证明了,为了描述 β 的基本向量场,只需考虑 U(H) 在 S(H) 上的正则作用的基本向量场以及与期望值函数 la(ρ)=Tr(aρ) 相关的梯度向量场,其中 a 是 H 上有界线性算子空间 B(H) 中的任意自伴元素,借助于所谓的 Bures-Helstrom 度量张量 [7-12]。这个例子提供了酉群 U(H)、S(H) 的 GL(H) - 齐次流形结构、Bures–Helstrom 度量张量和期望值函数之间的意外联系。然而,这并不是单调度量张量与一般线性群 GL(H) “相互作用”的唯一例子。事实上,在 [6] 中,还证明了 U(H) 正则作用的基本向量场以及与期望值函数相关的梯度向量场通过 Wigner–Yanase 度量
尽管近年来对持续学习(CL)的兴趣日益增强,但继续加强学习(CRL)仍然是一项艰巨的任务,因为深层神经网络必须从维持旧任务表现的新任务中从每个从未见过的新任务中推断出适当的行动。为了解决此问题,一些CRL算法使用基于正则化的方法来限制常规CL中使用的权重和基于重播的方法。但是,它需要花费大量时间来学习,因为它需要大量的基于重播和具有复杂正则化项的内存。在本文中,我们提出了一个简单的框架,用于保留相关顺序任务之间的知识fmal,即MAP注意力丢失。我们的方法利用模型的一般CNN,可以很好地执行所有顺序任务,并且注意机制用于提取基本特征进行传输。另外,FMAL同时使用正规化方法和基于重播的方法,例如现有的CRL方法。但是,学习所需的记忆量要小得多,正则化的项相对简单。我们使用最先进的算法评估FMAL。实验结果表明,我们的方法以较高的奖励超过这些基准。
本征态热化假设 (ETH) 解释了为什么当哈密顿量缺乏对称性时,非可积量子多体系统会在内部热化。如果哈密顿量守恒一个量(“电荷”),则 ETH 意味着在电荷区内(微正则子空间内)的热化。但量子系统中的电荷可能不能相互交换,因此不共享本征基;微正则子空间可能不存在。此外,哈密顿量会有退化,所以 ETH 不一定意味着热化。我们通过假设非阿贝尔 ETH 并调用量子热力学中引入的近似微正则子空间,将 ETH 调整为非交换电荷。以 SU(2) 对称性为例,我们将非阿贝尔 ETH 应用于计算局部算子的时间平均和热期望值。我们证明,在许多情况下,时间平均会热化。然而,我们发现,在物理上合理的假设下,时间平均值收敛到热平均值的过程异常缓慢,这是全局系统大小的函数。这项工作将 ETH(多体物理学的基石)扩展到非交换电荷,这是量子热力学最近非常活跃的一个主题。
摘要:深度学习的最新进展显著改善了脑肿瘤分割技术;然而,由于结果仅考虑图像数据而没有生物物理先验或病理信息,因此结果仍然缺乏信心和稳健性。整合生物物理学信息的正则化是改变这种情况的有效方法之一,因为它为自动端到端学习提供了先验正则化。在本文中,我们提出了一种新方法,将脑肿瘤生长偏微分方程 (PDE) 模型设计为深度学习的正则化,可与任何网络模型配合使用。我们的方法将肿瘤生长 PDE 模型直接引入分割过程,提高了准确性和稳健性,尤其是在数据稀缺的情况下。该系统使用周期性激活函数估计肿瘤细胞密度。通过有效地将这种估计与生物物理模型相结合,我们可以更好地捕捉肿瘤特征。这种方法不仅使分割更接近实际生物行为,而且还增强了模型在有限数据条件下的性能。我们通过对 BraTS 2023 数据集进行大量实验证明了我们框架的有效性,展示了肿瘤分割的精度和可靠性的显着提高。