摘要:基于事件相关电位 (ERP) 的 EEG 视觉脑机接口 (BCI) 的可用性得益于减少 BCI 操作前的校准时间。线性解码模型(例如时空波束形成器模型)可实现最先进的精度。尽管该模型的训练时间通常很短,但它可能需要大量的训练数据才能达到功能性能。因此,BCI 校准会话应该足够长以提供足够的训练数据。这项工作为波束形成器权重引入了两个正则化估计器。第一个估计器使用交叉验证的 L2 正则化。第二个估计器通过假设 Kronecker-Toeplitz 结构协方差来利用有关 EEG 结构的先验信息。使用包含 21 名受试者的 P300 范式记录的 BCI 数据集验证了这些估计器的性能,并将其与原始时空波束形成器和基于黎曼几何的解码器进行了比较。我们的结果表明,引入的估计器在训练数据有限的情况下条件良好,并提高了对未见数据的 ERP 分类准确性。此外,我们表明结构化正则化可以减少训练时间和内存使用量,并提高分类模型的可解释性。
经典和量子相变中出现的临界现象因其实验相关性和理论意义而备受关注[2,3]。许多临界现象被认为可以用共形场论(CFT)来描述,这些场论具有强相互作用,对二维(即 1 + 1D)以上更高时空维度的研究提出了挑战。最近,一种称为模糊(非交换)球面正则化 [1] 的方法被发明来研究由圆柱几何上的 3D CFT 控制的 3D(即 2 + 1D)临界现象,表示为 S 2 × R 。与传统的格点正则化相比,模糊球面正则化在三维 CFT 的研究中具有许多优势,这主要归功于它在 S 2 × R 中利用了径向量化[ 4 , 5 ]以及精确保存了球面 SO ( 3 ) 对称性[ 6 , 7 ],这一点最近已被令人信服地证明[ 1 , 8 – 11 ]。首先,模糊球面可以直接获取有关临界状态下出现的共形对称性的信息[ 1 , 10 ]。其次,它可以直接提取 CFT 的各种数据,包括共形主算子的众多缩放维度[ 1 , 10 ]、算子积展开系数[ 8 ]和四点相关器[ 9 ]。例如,可以直接从系统的激发能量计算缩放维度,并且可以使用共形扰动进一步提高其精度[12]。第三,模糊球方案适用于各种三维CFT,包括Ising[1]、O(N)Wilson-Fisher、SO(5)非禁闭相变[10]、临界规范理论[10]和缺陷CFT[11]。最后,当哈密顿量经过合理微调时,模糊球正则化表现出令人难以置信的小有限尺寸效应。模糊球正则化的这些优势为探索高效率、高精度和全面的三维CFT提供了激动人心的机会。模糊球正则化考虑了一个微观量子哈密顿量,在连续球面空间中对具有多种口味的费米子进行建模,并将费米子投影到最低球面朗道能级 [ 1 , 6 , 13 ] 。与规则晶格模型相比,模糊球模型在紫外极限下严格保持了连续旋转对称性。得益于通过微调实现的极小的有限尺寸效应,精确对角化 (ED) 和密度矩阵重正则化群 (DMRG) 方法等数值算法在研究 3D Ising CFT 和 SO ( 5 ) 解禁相变的模糊球模型时非常有效。然而,这两种算法的计算成本最终会随着系统尺寸呈指数增长。更重要的是,对于涉及大量费米子口味的情况,ED 和 DMRG 的计算成本很快就会超过实际的资源和时间限制。在这些情况下,使用随时间多项式缩放的方法(例如量子蒙特卡罗 (QMC))来研究模糊球面上的模型将会很有帮助。本文旨在利用 3D Ising CFT 作为示例,展示 QMC 方法在研究模糊球面上的 3D CFT 中的应用。在参考文献 [ 13 , 14 ] 中可以找到有关模糊环面模型的类似讨论。与参考文献 [ 1 ] 中介绍的模糊球面 Ising 模型相比,我们在费米子中引入了一个额外的味道指数,这会导致 QMC 模拟没有符号问题。作为基准,我们提供了数值
从医学图像中准确分割脑肿瘤对于诊断和治疗计划非常重要,而且通常需要多模态或对比度增强图像。然而在实践中,患者的某些模态可能缺失。合成缺失的模态有可能填补这一空白并实现高分割性能。现有方法通常分别处理合成和分割任务,或者将它们联合考虑,但没有对复杂的联合模型进行有效的正则化,导致性能有限。我们提出了一种新颖的脑肿瘤图像合成与分割网络 (TISS-Net),该网络可以高性能地端到端获得合成的目标模态和脑肿瘤分割。首先,我们提出了一个双任务正则化生成器,可以同时获得合成的目标模态和粗分割,它利用肿瘤感知合成损失和可感知正则化来最小化合成和真实目标模态之间的高级语义域差距。基于合成图像和粗分割,我们进一步提出了一个双任务分割器,它可以同时预测细化分割和粗分割中的误差,其中引入这两个预测之间的一致性以进行正则化。我们的 TISS-Net 通过两个应用进行了验证:合成 FLAIR 图像用于整个神经胶质瘤分割,合成增强 T1 图像用于前庭神经鞘瘤分割。实验结果表明,与现有模态的直接分割相比,我们的 TISS-Net 大大提高了分割精度,并且优于最先进的基于图像合成的分割方法。2023 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
方法:本研究提出了一种方差特征保持的 CSP(VPCSP),并通过基于图论的正则化项对其进行了修改。具体来说,我们在局部保留方差特征的同时计算投影数据的异常损失。然后,通过引入拉普拉斯矩阵将损失重写为矩阵,从而将其转化为与 CSP 等价的广义特征值问题。本研究在来自 BCI 竞赛的两个公共 EEG 数据集上评估了所提出的方法。改进的方法可以提取稳健且可区分的特征,从而提供更高的分类性能。实验结果表明,所提出的正则化显著提高了 CSP 的有效性,并且与已报道的改进 CSP 算法相比取得了显著更好的性能。
摘要。Jordan 代数自然出现在 (量子) 信息几何中,我们希望了解它们在该框架内的作用和结构。受 Kirillov 对余伴轨道辛结构的讨论的启发,我们在实 Jordan 代数的情况下提供了类似的构造。给定一个实数、有限维、形式上实数的 Jordan 代数 J ,我们利用由对偶 J ⋆ 上的 Jordan 积确定的广义分布在分布的叶子上诱导一个伪黎曼度量张量。特别是,这些叶子是李群的轨道,李群是 J 的结构群,与余伴轨道的情况类似。然而,这一次与李代数情况相反,我们证明 J ∗ 中并非所有点都位于正则 Jordan 分布的叶子上。当叶子节点包含在 J 上的正线性泛函锥中时,伪黎曼结构就变为黎曼结构,并且对于适当的 J 选择,它与有限样本空间上非正则化概率分布的 Fisher-Rao 度量相一致,或者与有限级量子系统的非正则化忠实量子态的 Bures-Helstrom 度量相一致,从而表明 Jordan 代数数学与经典和量子信息几何之间的直接联系。
为了识别癫痫患者的异常脑电图 (EEG) 信号,在本研究中,我们提出了一种基于联合分布自适应和流形正则化的在线选择性转移 TSK 模糊分类器。与大多数现有的转移分类器相比,我们的分类器有自己的特点:(1)来自源域的标记 EEG 时期不能准确表示目标域中的原始 EEG 时期。我们的分类器可以利用目标域中很少的校准数据来诱导目标预测函数。(2)联合分布自适应用于最小化源域和目标域之间的边缘分布距离和条件分布距离。(3)使用聚类技术选择源域,从而降低分类器的计算复杂度。我们根据波恩大学提供的原始 EEG 信号构建了六种传输场景来验证我们分类器的性能,并引入四个基线和一个传输支持向量机 (SVM) 进行基准研究。实验结果表明,我们的分类器获得了最佳性能并且对其参数不太敏感。
正则化向量或单位向量是范数等于 1 的向量。如果所有向量都是正则化的并且相互正交,则称基是正交的。具有内积的有限向量空间称为希尔伯特空间。为了使无限向量空间成为希尔伯特空间,它除了具有内积之外,还必须遵循其他属性。由于我们主要处理有限向量空间,因此我们使用术语希尔伯特空间作为具有内积的向量空间的同义词。有限希尔伯特空间 V 的子空间 W 也是希尔伯特空间。与 W 的所有向量正交的向量集是希尔伯特空间 W - 称为正交补。V 是 W 和 W - 的直接和,即 VDW˚W-。N 维希尔伯特空间将用 HN 表示以突出其维数。与系统 A 相关的希尔伯特空间将用 HA 表示。
随机辍学已成为人工神经网络(ANN)中的标准正则化技术,但是目前尚不清楚生物神经网络(Bionns)中是否存在类似机制。如果这样做,它的结构可能会通过数亿年的进化来优化,这可能表明大规模ANN中的新型辍学策略。我们建议大脑血清素能纤维符合一些预期的标准,因为它们的存在,随机结构和在整个人的寿命中成长的能力。由于血清素能纤维的轨迹可以建模为异常扩散过程的路径,因此,在这项概念验证研究中,我们研究了基于超级产生分数布朗尼运动(FBM)的辍学算法。这项研究有助于ANN中受生物启发的正则化。
摘要。我们通过引入众所周知的经典方法的量子扩展,建立了关于量子 Wasserstein 距离的运输成本不等式 (TCI):首先,我们推广 Do-brushin 唯一性条件,以证明一维交换汉密尔顿量的吉布斯态在任何正温度下都满足 TCI,并提供将此第一个结果扩展到非交换汉密尔顿量的条件。接下来,使用 Ollivier 粗 Ricci 曲率的非交换版本,我们证明任意超图 H = ( V, E ) 上的交换汉密尔顿量的高温吉布斯态满足具有常数缩放的 TCI,即 O ( | V | )。第三,我们论证了通过将 TCI 与最近建立的修正对数 Sobolev 不等式联系起来可以扩大 TCI 成立的温度范围。第四,我们证明,在固定点局部不可区分性条件似乎较弱的情况下,该不等式对于正则格上任意可逆局部量子马尔可夫半群的固定点仍然成立,尽管常数略有恶化。最后,我们使用我们的框架证明了准局部可观测量的特征值分布的高斯集中界,并论证了 TCI 在证明正则和微正则集合的等价性以及对弱本征态热化假设的指数改进方面的实用性。