摘要背景:CXCR4 导向的正电子发射断层扫描/计算机断层扫描 (PET/CT) 已被用作实体瘤患者的诊断工具。我们的目的是确定肿瘤负荷和正常器官中放射性示踪剂积累之间的潜在相关性。方法:90 例经组织学证实的实体癌患者接受了 CXCR4 靶向的 [ 68 Ga] Ga-PentixaFor PET/CT 检查。感兴趣的体积 (VOI) 被放置在正常器官(心脏、肝脏、脾脏、骨髓和肾脏)和肿瘤病变中。确定正常器官的平均标准化摄取值 (SUV 平均值)。对于 CXCR4 阳性肿瘤负荷,计算最大 SUV (SUV 最大值)、肿瘤体积 (TV) 和肿瘤活动分数 (FTA,定义为 SUV 平均值 x TV)。我们使用 Spearman 等级相关系数 (ρ) 来推导正常器官摄取和肿瘤负荷之间的相关指数。结果:未受累器官的中位SUV平均值为脾脏5.2(范围,2.44 – 10.55),肾脏3.27(范围,1.52 – 17.4),其次是骨髓(1.76,范围,0.84 – 3.98),心脏(1.66,范围,0.88 – 2.89)和肝脏(1.28,范围,0.73 – 2.45)。未发现肿瘤病灶(ρ≤0.189,P≥0.07)、TV(ρ≥-0.204,P≥0.06)或FTA(ρ≥-0.142,P≥0.18)的SUV最大值与所研究的器官之间有显著相关性。结论:在接受 [ 68 Ga]Ga-PentixaFor PET/CT 成像的实体肿瘤患者中,未观察到相关的肿瘤下沉效应。这一观察结果可能与放射性和非放射性 CXCR4 靶向药物的治疗有关,因为随着肿瘤负担的增加,正常器官的剂量可能保持不变。
4。Espay AJ,Da Prat GA,Dwivedi AK等。解构正常压力脑积水:室性肿瘤作为神经模型的早期迹象。Ann Neurol。 2017; 82:503–13。 5。 Magdalinou NK,Ling H,Smith JD等。 正常压力脑力头或进行性核上麻痹? 临床病理病例系列。 j Neurol。 2013; 260:1009–13。 6。 Mueller C,Hussl A,Krismer F等。 神经播放性帕金森氏症患者的蜂鸟和早晨的荣耀标志的诊断准确性。 帕金森主义关系疾病。 2018; 54:90–94。 7。 Quattrone A,Morelli M,Nigro S等。 一种新的MR成像指数,用于分化进行性核上麻痹与帕金森氏病。 帕金森主义关系疾病。 2018; 54:3–8。 8。 Quattrone A,Nicoletti G,Messina D等。 MR成像指数用于分化进行性核上麻痹与帕金森氏病和多个系统萎缩的帕金森氏症变体。 放射学。 2008; 246:214–21。 9。 Kockum K,Lilja-Lund O,Larsson EM等。 特发性正常压力脑积水辐射:用于结构化评估的放射量表。 EUR J NEUROL。 2018; 25:569–76。 10。 Virhammar J,Laurell K,Cesarini KG等。 在108例特发性正常压力脑清脑患者中,MRI发现的术前预后值。 ajnr am j neuroradiol。 11。Ann Neurol。2017; 82:503–13。5。Magdalinou NK,Ling H,Smith JD等。正常压力脑力头或进行性核上麻痹?临床病理病例系列。j Neurol。2013; 260:1009–13。6。Mueller C,Hussl A,Krismer F等。神经播放性帕金森氏症患者的蜂鸟和早晨的荣耀标志的诊断准确性。帕金森主义关系疾病。2018; 54:90–94。7。Quattrone A,Morelli M,Nigro S等。一种新的MR成像指数,用于分化进行性核上麻痹与帕金森氏病。帕金森主义关系疾病。2018; 54:3–8。8。Quattrone A,Nicoletti G,Messina D等。MR成像指数用于分化进行性核上麻痹与帕金森氏病和多个系统萎缩的帕金森氏症变体。放射学。2008; 246:214–21。 9。 Kockum K,Lilja-Lund O,Larsson EM等。 特发性正常压力脑积水辐射:用于结构化评估的放射量表。 EUR J NEUROL。 2018; 25:569–76。 10。 Virhammar J,Laurell K,Cesarini KG等。 在108例特发性正常压力脑清脑患者中,MRI发现的术前预后值。 ajnr am j neuroradiol。 11。2008; 246:214–21。9。Kockum K,Lilja-Lund O,Larsson EM等。特发性正常压力脑积水辐射:用于结构化评估的放射量表。EUR J NEUROL。2018; 25:569–76。10。Virhammar J,Laurell K,Cesarini KG等。在108例特发性正常压力脑清脑患者中,MRI发现的术前预后值。ajnr am j neuroradiol。11。2014; 35:2311–18。Ohara M,Hattori T,Yokota T.进行性核上麻痹经常发展特发性正常压力脑清脑液样磁共振成像特征。EUR J NEUROL。2020; 27:1930–36。12。Onder H,Kocer B,Turan A等。 特发性正常压力脑积水和进行性核上核瘫痪之间的神经影像学发现的重叠。 Ann Indian Acad Neurol。 2022; 25:1087–91。 13。 君士坦丁字VC,Paraskevas GP,Velonakis G等。 特发性正常压力脑清脑中的中脑 - 脑化学:一种进行性上核瘫痪模仿。 acta neurol扫描。 2020; 141:328–34。 14。 Virhammar J,BlohméH,Nyholm D等。 中脑区域和来自脑部MRI的蜂鸟标志在进行性核上麻痹和特发性正常压力脑积水中。 j神经影像学。 2022; 32:90–96。 15。 以色列H,Carlberg B,WikkelsöC等。 INPH中的血管风险因素:一项前瞻性病例对照研究(INPH挤压研究)。 神经病学。 2017; 88:577–85。 16。 Stankovic I,Krismer F,Jesic A等。 多PLE系统萎缩中的认知障碍:MDS多系统萎缩(MODIMSA)研究组的神经心理学工作组的位置陈述。 MOV DISORD。 2014; 29:857–67。 17。 FällmarD,Andersson O,Kilander L等。 流体屏障中枢神经系统。 2021; 18:35。 18。 Fu MH,Huang CC,Wu Klh等。Onder H,Kocer B,Turan A等。特发性正常压力脑积水和进行性核上核瘫痪之间的神经影像学发现的重叠。Ann Indian Acad Neurol。 2022; 25:1087–91。 13。 君士坦丁字VC,Paraskevas GP,Velonakis G等。 特发性正常压力脑清脑中的中脑 - 脑化学:一种进行性上核瘫痪模仿。 acta neurol扫描。 2020; 141:328–34。 14。 Virhammar J,BlohméH,Nyholm D等。 中脑区域和来自脑部MRI的蜂鸟标志在进行性核上麻痹和特发性正常压力脑积水中。 j神经影像学。 2022; 32:90–96。 15。 以色列H,Carlberg B,WikkelsöC等。 INPH中的血管风险因素:一项前瞻性病例对照研究(INPH挤压研究)。 神经病学。 2017; 88:577–85。 16。 Stankovic I,Krismer F,Jesic A等。 多PLE系统萎缩中的认知障碍:MDS多系统萎缩(MODIMSA)研究组的神经心理学工作组的位置陈述。 MOV DISORD。 2014; 29:857–67。 17。 FällmarD,Andersson O,Kilander L等。 流体屏障中枢神经系统。 2021; 18:35。 18。 Fu MH,Huang CC,Wu Klh等。Ann Indian Acad Neurol。2022; 25:1087–91。13。君士坦丁字VC,Paraskevas GP,Velonakis G等。特发性正常压力脑清脑中的中脑 - 脑化学:一种进行性上核瘫痪模仿。acta neurol扫描。2020; 141:328–34。14。Virhammar J,BlohméH,Nyholm D等。中脑区域和来自脑部MRI的蜂鸟标志在进行性核上麻痹和特发性正常压力脑积水中。j神经影像学。2022; 32:90–96。15。以色列H,Carlberg B,WikkelsöC等。 INPH中的血管风险因素:一项前瞻性病例对照研究(INPH挤压研究)。 神经病学。 2017; 88:577–85。 16。 Stankovic I,Krismer F,Jesic A等。 多PLE系统萎缩中的认知障碍:MDS多系统萎缩(MODIMSA)研究组的神经心理学工作组的位置陈述。 MOV DISORD。 2014; 29:857–67。 17。 FällmarD,Andersson O,Kilander L等。 流体屏障中枢神经系统。 2021; 18:35。 18。 Fu MH,Huang CC,Wu Klh等。以色列H,Carlberg B,WikkelsöC等。INPH中的血管风险因素:一项前瞻性病例对照研究(INPH挤压研究)。 神经病学。 2017; 88:577–85。 16。 Stankovic I,Krismer F,Jesic A等。 多PLE系统萎缩中的认知障碍:MDS多系统萎缩(MODIMSA)研究组的神经心理学工作组的位置陈述。 MOV DISORD。 2014; 29:857–67。 17。 FällmarD,Andersson O,Kilander L等。 流体屏障中枢神经系统。 2021; 18:35。 18。 Fu MH,Huang CC,Wu Klh等。INPH中的血管风险因素:一项前瞻性病例对照研究(INPH挤压研究)。神经病学。2017; 88:577–85。16。Stankovic I,Krismer F,Jesic A等。多PLE系统萎缩中的认知障碍:MDS多系统萎缩(MODIMSA)研究组的神经心理学工作组的位置陈述。MOV DISORD。 2014; 29:857–67。 17。 FällmarD,Andersson O,Kilander L等。 流体屏障中枢神经系统。 2021; 18:35。 18。 Fu MH,Huang CC,Wu Klh等。MOV DISORD。2014; 29:857–67。17。FällmarD,Andersson O,Kilander L等。 流体屏障中枢神经系统。 2021; 18:35。 18。 Fu MH,Huang CC,Wu Klh等。FällmarD,Andersson O,Kilander L等。流体屏障中枢神经系统。2021; 18:35。18。Fu MH,Huang CC,Wu Klh等。Fu MH,Huang CC,Wu Klh等。与特发性正常压力脑积水相关的成像特征,即使与血管痴呆和非典型帕金森 - ISM相比,也具有很高的特异性。特发性北压脑电图脑清晰的MRI特征的较高流行率在渐进性上透明麻痹中:成像提醒着非典型的帕金森氏症。大脑行为。2023; 13:e2884。19。Chui HC,Victoroff JI,Margolin D等。 诊断的标准是加利福尼亚州阿尔茨海默氏病诊断和治疗中心提出的缺血性血管性痴呆。 神经病学。 1992; 42(3 pt 1):473–80。 20。 Gilman S,Wenning GK,Low PA等。 关于诊断多系统萎缩的第二次共识陈述。 神经病学。 2008; 71:670–76。 21。 Litvan I,Agid Y,Calne D等。 进行性核上麻痹(Steele-Richardson-Olszewski综合征)诊断的临床研究标准:Ninds-SPSP国际研讨会的报告。 neu-rology。 1996; 47:1–9。 22。 Relkin N,Marmarou A,Klinge P等。 诊断特发性正常压力脑积水。 神经外科。 2005; 57:S4–16;讨论II-V。Chui HC,Victoroff JI,Margolin D等。诊断的标准是加利福尼亚州阿尔茨海默氏病诊断和治疗中心提出的缺血性血管性痴呆。神经病学。1992; 42(3 pt 1):473–80。20。Gilman S,Wenning GK,Low PA等。关于诊断多系统萎缩的第二次共识陈述。神经病学。2008; 71:670–76。 21。 Litvan I,Agid Y,Calne D等。 进行性核上麻痹(Steele-Richardson-Olszewski综合征)诊断的临床研究标准:Ninds-SPSP国际研讨会的报告。 neu-rology。 1996; 47:1–9。 22。 Relkin N,Marmarou A,Klinge P等。 诊断特发性正常压力脑积水。 神经外科。 2005; 57:S4–16;讨论II-V。2008; 71:670–76。21。Litvan I,Agid Y,Calne D等。 进行性核上麻痹(Steele-Richardson-Olszewski综合征)诊断的临床研究标准:Ninds-SPSP国际研讨会的报告。 neu-rology。 1996; 47:1–9。 22。 Relkin N,Marmarou A,Klinge P等。 诊断特发性正常压力脑积水。 神经外科。 2005; 57:S4–16;讨论II-V。Litvan I,Agid Y,Calne D等。进行性核上麻痹(Steele-Richardson-Olszewski综合征)诊断的临床研究标准:Ninds-SPSP国际研讨会的报告。neu-rology。1996; 47:1–9。22。Relkin N,Marmarou A,Klinge P等。诊断特发性正常压力脑积水。神经外科。2005; 57:S4–16;讨论II-V。2005; 57:S4–16;讨论II-V。
1. Jack CR Jr、Bennett DA、Blennow K、Carrillo MC、Framework NIA- AAResearch。阿尔茨海默病的生物学定义。Alzheimers Dement。2018;14:535-562。2. Apostolova LG、Green AE、Babakchanian S 等人。正常衰老、轻度认知障碍 (MCI) 和阿尔茨海默病中的海马萎缩和脑室扩大。Alzheimer Dis Assoc Disord。2012;26(1):17-27。3. Schröder J、Pantel J。海马萎缩的神经影像学在阿尔茨海默病早期识别中的作用——经过二十年研究的批判性评价。Psychiatry Res Neuroimaging。2016;247:71-78。 4. Seab JP、Jagust WJ、Wong ST、Roos MS、Reed BR、Budinger TF。阿尔茨海默病海马萎缩的定量 NMR 测量。Magn Reson Med。1988;8:200-208。5. Debette S、Schilling S、Duperron MG、Larsson SC、Markus HS。血管性脑损伤磁共振成像标记物的临床意义:系统评价和荟萃分析。JAMA Neurol。2019;76:81-94。6. Prins ND、Scheltens P。白质高信号、认知障碍和痴呆:最新进展。Nat Rev Neurol。 2015;11:157-165。7. Wardlaw JM、Valdés Hernández MC、Muñoz-Maniega S。白质高信号是由什么构成的?与血管性认知障碍的关系。J Am Hear Assoc。2015;4:1140。8. Sundermann EE、Biegon A、Rubin LH、Lipton RB、Landau S、Maki PM。女性在言语记忆方面的优势是否导致人们低估女性与男性的阿尔茨海默病病理?J Alzheimers Dis。2017;56:947-957。9. Sundermann EE、Biegon A、Rubin LH 等。尽管海马萎缩程度相似,但 MCI 女性的言语记忆力优于男性。神经病学。 2016;86:1368-1376。10. Hua X、Hibar DP、Lee S 等。萎缩率的性别和年龄差异:一项基于 n = 1368 次 MRI 扫描的 ADNI 研究。神经生物学衰老。2010;31:1463-1480。11. Ardekani BA、Convit A、Bachman AH。MIRIAD 数据分析显示海马萎缩进展存在性别差异。阿尔茨海默病杂志。2016;50:847-857。12. Burke SL、Hu T、Fava NM。通过海马体积或白质高信号预测轻度认知障碍和疑似阿尔茨海默病发展的性别差异。女性衰老杂志。2019;31:140-164。 13. Kim S、Kim MJ、Kim S 等人。从轻度认知障碍转变为阿尔茨海默病的风险因素的性别差异:一项 CREDOS 研究。Compr Psychiatry。2015;62:114-122。14. Mielke MM、Vemuri P、Rocca WA。阿尔茨海默病的临床流行病学:评估性别和性别差异。临床流行病学。2014;6:37-48。15. Smith BH、Campbell A、Linksted P 等人。队列概况:苏格兰一代:苏格兰家庭健康研究 (GS:SFHS)。该研究、其参与者及其对健康和疾病的遗传研究潜力。国际流行病学杂志。2013;42:689-700。 16. Navrady LB、Wolters MK、MacIntyre DJ 等。群组概况:纵向分层复原力和抑郁 (STRADL) 研究:针对 Generation Scotland 的一项问卷随访:苏格兰家庭健康研究 (GS:SFHS)。国际流行病学杂志。2018;47:13-14g。17. Habota T、Sandu AL、Waiter GD 等人。纵向分层复原力和抑郁 (STRADL) 研究的队列概况:针对 Generation Scotland 的一项以抑郁为重点的调查,使用
简单的摘要:大约15%的患有先天性心脏病(CHD)的患者具有特定的遗传异常,称为拷贝数变体。他们的大多数基因检测(称为染色体微阵列(CMA))被认为是正常的。但是,我们怀疑即使在测试结果中没有报告过一些很小的遗传缺失,也可能与CHD有关。为了调查这一点,我们研究了319例CHD患者的基因测试数据。然后,我们专注于这些与CHD相关的小缺失中的基因,基于某些标准,例如它们与CHD的关联,其在胎儿心脏中的表达水平以及失去这些基因的潜在影响。分析数据后,我们发现这些未报告的小遗传缺失的可能性更大的可能涉及与CHD相关的基因以及可能很重要但以前尚未识别的基因。我们的研究表明,可以随时获得的“正常”基因测试数据对于发现与CHD的新遗传联系很有价值。此外,还应给予较小的遗传缺失,以使冠心病的潜在影响更加临床关注。
摘要:脑内活性氧 (ROS) 的产生受稳态控制,有助于正常的神经功能。脑老化或病理条件下控制机制的低效会导致 ROS 过量产生,从而导致氧化性神经细胞损伤和退化。在对氧化应激引起的神经功能障碍具有治疗潜力的化合物中,鸟嘌呤类嘌呤 (GBP) 最为典型,其中最典型的是核苷鸟苷 (GUO) 和核碱基鸟嘌呤 (GUA),它们的作用不同。事实上,将 GUO 施用给急性脑损伤(缺血/缺氧或创伤)或慢性神经/神经退行性疾病的体外或体内模型,可发挥神经保护和抗炎作用,减少活性自由基的产生,并通过多种分子信号改善线粒体功能。然而,将 GUO 施用给啮齿动物也会导致失忆效应。相反,代谢物 GUA 可通过暂时增加 ROS 生成和刺激一氧化氮/可溶性鸟苷酸环化酶/cGMP/蛋白激酶 G 级联来有效治疗记忆相关疾病,而这长期以来被认为对认知功能有益。因此,值得进一步研究以确定 GUO 和 GUA 的治疗作用,并评估这些化合物可以更有效地用于哪些病理性脑部疾病。
在过去的十年中,多项研究报告了可能促进或预测痴呆症发展的主要危险因素,包括年龄,教育,性别,精神障碍,糖尿病等(3,4)。很少有人关注MCI正常认知功能的风险或原因。此外,随着成像的发展,磁共振成像(MRI)可以提供不同脑损伤的可视化,例如缺血性中风,白质超强度(WMH)和脑萎缩,越来越多地用于诊断和病因学区分认知功能障碍(5,6)。很少有研究集中于临床和图像因素的组合,以确定MCI的未来风险。与科学家手动完成的数据分析相比,人工模型在检测不同变量的重要性并平衡每个变量和周期之间的重量方面可能更强大且准确。
摘要背景:CXCR4 导向的正电子发射断层扫描/计算机断层扫描 (PET/CT) 已被用作实体瘤患者的诊断工具。我们的目的是确定肿瘤负荷和正常器官中放射性示踪剂积累之间的潜在相关性。方法:90 例经组织学证实的实体癌患者接受了 CXCR4 靶向的 [ 68 Ga] Ga-PentixaFor PET/CT 检查。感兴趣的体积 (VOI) 被放置在正常器官(心脏、肝脏、脾脏、骨髓和肾脏)和肿瘤病变中。确定正常器官的平均标准化摄取值 (SUV 平均值)。对于 CXCR4 阳性肿瘤负荷,计算最大 SUV (SUV 最大值)、肿瘤体积 (TV) 和肿瘤活动分数 (FTA,定义为 SUV 平均值 x TV)。我们使用 Spearman 等级相关系数 (ρ) 来推导正常器官摄取和肿瘤负荷之间的相关指数。结果:未受累器官的中位SUV平均值为脾脏5.2(范围,2.44 – 10.55),肾脏3.27(范围,1.52 – 17.4),其次是骨髓(1.76,范围,0.84 – 3.98),心脏(1.66,范围,0.88 – 2.89)和肝脏(1.28,范围,0.73 – 2.45)。未发现肿瘤病灶(ρ≤0.189,P≥0.07)、TV(ρ≥-0.204,P≥0.06)或FTA(ρ≥-0.142,P≥0.18)的SUV最大值与所研究的器官之间有显著相关性。结论:在接受 [ 68 Ga]Ga-PentixaFor PET/CT 成像的实体肿瘤患者中,未观察到相关的肿瘤下沉效应。这一观察结果可能与放射性和非放射性 CXCR4 靶向药物的治疗有关,因为随着肿瘤负担的增加,正常器官的剂量可能保持不变。
抽象背景和目标。视黄酸(RA)是促进正常脊椎动物发育的重要形态,在大多数器官和组织中,其在关键梯度中的工作。RA的外源会在这些器官和组织中引起畸形。目前的研究旨在找出溶解在二甲基亚硫代(DMSO)中的不同浓度6、10mg/ ml的视黄酸对不同胚胎阶段鸡发育的影响。方法。从当地的家禽农场污染的肥沃的家为gallus gallus卵,清洗和消毒,然后分为两组实验,每组一组用于每种浓度。每个实验包含三组,每组10个卵。这些组在四个不同的阶段HH8,HH10,HH15和HH18重复四次。卵在孵育中孵育,以进行要求,然后从孵育中移除并在空气囊中注射RA或(DMSO),或在未经治疗的对照中保留,然后将鸡蛋再孵育24小时。孵育24和48小时后打开卵,收集生存的胚胎并在形态学和组织学上进行评估。结果。该研究表明RA会导致一般的生长迟缓。此外,它会导致小头畸形,颅裂,心脏肿瘤,前肢诱导,直中继。畸形程度取决于发展阶段和RA浓度,是由于高浓度和早期阶段的畸形增加。在早期用10mg/mL处理的胚胎中观察到的显着影响。结论。引用本文。作者。此外,HH8和HH10中RA的作用比在HH15时注射的胚胎和HH18的胚胎的作用更加清晰。这项研究表明,以高于确保正常胚胎发育所必需的剂量的外源性RA治疗会导致严重异常。这表明对类风湿关节炎的胚胎反应非常敏感,尤其是在胎儿神经发生过程中。视黄酸对鸡胚胎发育的影响。Alq J Med App Sci。2023; 6(2):650-660。 https://doi.org/10.5281/zenodo.10015147在多细胞生物,细胞命运和行为的开发过程中引入了几种形态,其作品以精确的梯度调节。视黄酸(RA)是有助于脊椎动物胚胎发展的重要形态学。它是由中胚层组织中的普provicimin A制成的,其中包括视网膜脱水酶家族的成员[1,2]。ra和其他类维生素A及其生理代谢产物对模式发育产生强大的影响,并且可能是调节胚胎发育的形态学之一[3-6]。
正常状态下,通过负载对电池放电, DW02R 电路的 VM 端电压将随放电电流的增加而升高。如果放电电 流增加使 VM 端电压超过过电流放电保护阈值 V EDI ,且持续时间超过过电流放电保护延迟时间 tEDI ,则 DW02R 进入过电流放电保护状态;如果放电电流进一步增加使 VM 端电压超过电池短路保护阈值 V SHORT ,且 持续时间超过短路延迟时间 t short ,则 DW02R 进入电池短路保护状态。
首先道天线为仪表着陆系统的组成部分,它能够提 提供准确的方向指示及下降导航讯号,在正常或即使在统计的天气状况下,航机亦能安全地在跑道上着陆。 滑翔路径天线是安装在机场的仪表着陆系统的一个组成部分,提供精确的下降引导信号,以便在所有天气条件下飞机在跑道上安全着陆。