摘要 - 在本文中,我们强烈提倡正方形 - 根协方差(而不是信息)对视觉惯性导航系统(VIN)的过滤,尤其是在资源约束的边缘设备上,因为其效率较高和数值稳定性。尽管VIN近年来取得了巨大进展,但在施加有限的单词长度时,它们仍然在嵌入式系统上面临资源的严格性和数值不稳定。为了克服这些挑战,我们开发了一种超快速和数值稳定的平方根滤波器(SRF) - 基于VINS算法(即SR-VINS)。所提出的SR-VIN的数值稳定性是从采用方形协方差继承而来的,而非新颖的SRF更新方法基于我们新的Permisted-QR(P-QR)的新型SRF更新方法可以极大地实现,该方法完全利用,该方法完全利用并适当地维持了平方英尺的上层三角形结构。此外,我们选择了状态变量的特殊订购,该变量适用于SRF传播中的(p-)QR操作,并更新并防止不必要的计算。通过数值研究对拟议的SR-VIN进行了广泛的验证,表明当最先进的(SOTA)过滤器存在数值困难时,我们的SR-VINS具有较高的数值稳定性,并且非常明显地,在32位单一的速度上,以速度快速旋转,可以像Sota一样快速地浮动32位单一的浮动效果。我们还进行了全面的现实实验,以验证所提出的SR-VIN的效率,准确性和鲁棒性。
2有效的SQAURE-ROOT滤波2 2.1置换-QR分解。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 2.2传播。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 2.2.1 Kalman滤波器。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 4 2.2.2平方根滤波器。 。 。 。4 2.2.1 Kalman滤波器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 2.2.2平方根滤波器。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 2.2.3证明。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 2.3州扩展和克隆。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5 2.3.1 Kalman滤波器。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>5 2.3.1 Kalman滤波器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5 2.3.2平方根滤波器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5 2。2.3.3证明。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5 2.4更新。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 2.4.1 Kalman滤波器。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 6 2.4.2平方根滤波器。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 6 2.4.3证明。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>6 2.4.1 Kalman滤波器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 2.4.2平方根滤波器。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 6 2.4.3证明。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>6 2.4.2平方根滤波器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 2.4.3证明。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。7 2.5状态边缘化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 2.5.1 Kalman滤波器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 2.5.2平方根滤波器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 2.5.3证明。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>9 div>
•介绍机器学习•监督和不受监督的学习之间的差异•分类和回归之间的差异•机器学习应用•数据科学项目生命周期•线性回归理论•线性回归理论•成本功能•使用梯度下降使用梯度下降的优化梯度解释•梯度解释•模型下降•模型误差•平均正方误差•平均正方误差•多态性误差•多态多态,多态多态,多态,多态,多态,多态,多态,多态,多态,多态,多态,多态,多态误差,使用Python进行回归•过度拟合,不适合,合适的拟合•逻辑回归•理解逻辑回归一步一步矩阵