钾离子电池 (PIB) 因其潜在的价格优势、丰富的钾资源以及钾的标准氧化还原电位低而作为大规模电能存储系统中锂离子电池 (LIB) 的有希望的替代品而受到越来越多的关注。然而,寻找具有所需特性(例如电压平台、高容量和长循环稳定性)的合适正极材料至关重要。最近,用于 PIB 的层状过渡金属氧化物因其高理论容量、合适的电压范围和环境友好性而显示出巨大的潜力。然而,由于 Jahn-Teller 效应引起的结构无序和不可逆相变的有害影响,K x MO 2 正极在 PIB 中的进展面临障碍。本综述简要介绍了 Jahn-Teller 效应的起源和机制,并提出了缓解这种现象的原则。特别地,总结了 PIB 用 K x MO 2 正极的现状,强调了 Jahn-Teller 效应带来的挑战。此外,提出了有希望的策略,例如成分调制、合成方法和表面改性,以减轻和抑制 Jahn-Teller 效应。这些策略为创新正极材料的前景提供了宝贵的见解,并为 PIB 领域的未来研究奠定了基础。
4.1. 戴上绝缘手套................................................................................................................................................ 9 4.2. 取下盖子................................................................................................................................................. 9 4.3. 将分流器连接到辅助电池负极.........................................................................................................................10 4.4. 将分流器连接到设备 AUX BAT-.........................................................................................................................10 4.5. 将分流器连接到辅助电池正极.....................................................................................................................11 4.6. 安装电池温度传感器....................................................................................................................................11 4.7. 将分流器连接到启动器电池正极(可选)....................................................................................................12 4.8. 安装分流器(可选).............................................................................................................................12 4.9. 安装盖子....................................................................................................................................................13
摘要我们经常观察到一些具有层状阴极材料的失控锂离子电池内部温度比现有热失控模型预测的要高得多。此外,正极活性材料中原有的金属(如 Co、Ni 和 Mn)经常出现在温度变得非常高的电池中。有人推测金属的形成可以归因于岩盐物质(MO,其中 M 是金属)的还原,或锂化活性材料(LiMO 2 )与 CO 2 的反应。我们提出了金属形成的另一种解释,这也会导致非常高的电池温度,即 Al 正极集流体和正极活性材料之间的铝热反应。与提到的 MO 和 LiMO 2 的反应相反,这些反应是高度放热的。本文介绍了铝热反应的化学性质。在失控模型中加入铝热反应可能会改善热失控时锂离子电池的温度预测。
更广泛的背景由于传统电池中使用的锂和过渡金属氧化物稀缺,人们强烈要求开发替代电池技术,以用于从小型设备到大型固定式电力存储等各种应用。由于铝是地壳中最广泛存在的元素之一,因此铝基电池被认为是此类下一代储能设备的有希望的候选者。然而,到目前为止,找到能够可逆地插入(复合)铝离子的合适主电极材料仍然是一个挑战。在本文中,我们展示了一种设计此类正极材料的策略。该策略涉及使用有机氧化还原聚合物作为正极材料,其可逆地插入两个 [AlCl 4 ] 离子,其比容量超过作为正极材料的石墨。此外,它在快速 C 速率下表现出卓越的循环性。这一概念可以为开发先进的铝基电池和经济实惠的储能设备铺平道路。
摘要 通过恒电流间歇滴定技术在 3 至 4.2 V 电压范围内测定了 LiNi 1/3 Mn 1/3 Co 1/3 O 2 中的化学扩散系数。在充电和放电过程中,这些层状氧化物正极中的计算扩散系数分别在开路电压 3.8 V 和 3.7 V vs. Li/Li + 时达到最小。观察到的化学扩散系数的最小值表明在此电压范围内发生了相变。使用非原位晶体学分析确定了不同锂化状态下 LiNi 1/3 Mn 1/3 Co 1/3 O 2 正极的晶胞参数。结果表明,晶胞参数变化与 NMC 正极中化学扩散的观测值相关性很好;在同一电压范围内,绝对值有显著变化。我们将观察到的晶胞参数变化与镍转化为三价状态(具有 Jahn-Teller 活性)以及锂离子和空位的重新排列联系起来。
新疆师范大学化学化工学院,乌鲁木齐 830054 新疆,中国 * 电子邮件:suzhixj@sina.com 收稿日期:2019年11月8日 / 接受日期:2020年1月9日 / 发表日期:2020年5月10日 电极废弃物 LiNi 0.5 Co 0.2 Mn 0.3 O 2 回收的关键是有效地将正极材料与金属Al箔分离,以提高回收率。本文描述的方法利用有机溶剂与聚偏氟乙烯 (PVDF) 的相容性、超声波引起的空化和对流效应以及 PVDF 的分解温度。探索了超声处理持续时间、有机溶剂类型、有机溶剂与正极材料的比例、搅拌温度、搅拌时间、超声处理和搅拌顺序以及煅烧温度,以确定最佳条件。由此确定最佳剥离效率约为 93 %。将经有机溶剂预处理后的正极材料进行煅烧,通过 600 ℃煅烧有效去除 PVDF 粘结剂,在 800 ℃煅烧可得到具有合适层状结构和最好电化学性能的正极材料,首次放电比容量为 164.2 mAh g -1 。经过 50 次充放电循环后放电比容量为 132.4 mAh g -1,容量保持率为 80.6 %。关键词:LiNi 0.5 Co 0.2 Mn 0.3 ;回收利用;溶剂溶解法;电极废料;超声波 1. 引言
上图显示了嵌入锂离子的橄榄石状排列的 LFP。生产磷酸铁锂正极材料所涉及的步骤如下所示。工业上,LFP 主要采用单级热工艺生产,该工艺分为研磨和煅烧以及最终应用于正极的子工艺。前体可以通过碳酸盐或氢氧化物途径合成。通常会选择更便宜的原材料。LFP 可以使用不同的工艺生产。以下过程作为示例进行解释。
流场;2) 从电池顶部连接到对电极集电器;3) 参比电极集电器;4) 对电极集电器;a) 集电器箔上的工作电极;b) 隔板;c) 参比电极(钠金属);d) 对电极(钠金属);e) 对电极安装板。b) DEMS 测量装置流程图。测量和控制单元的字母符号图例:C = 控制器,F = 流量,I = 指示器,P = 压力,T = 温度。
1 北京大学地球与空间科学学院造山带与地壳演化教育部重点实验室,北京 100871,中国 2 北京金羽能源科技有限公司,北京 100095,中国 * 电子邮件:xychuan@pku.edu.cn a 作者对这项工作的贡献相同 收到日期:2020 年 3 月 3 日/接受日期:2020 年 4 月 26 日/发布日期:2020 年 6 月 10 日 水系锌离子电池(ZIB)因其优异的安全性、成本效益和环境友好性而被公认为大规模储能最有希望的候选材料之一。然而,由于合适正极材料的可用性有限,ZIB 的应用受到阻碍。在本工作中,通过模板辅助热分解制备了多孔管状 MoS 2,其中以(NH 4 ) 2 MoS 4 为前驱体,以天然埃洛石为模板。作为一种有前途的锌离子电池正极材料,所制备的 MoS 2 在 0.2 A g -1 时表现出良好的比容量 146.2 mAh g -1 ,并且具有优异的循环性能,800 次循环后容量保持率为 74.0%。此外,所提出的 MoS 2 即使在 1 A g -1 时也表现出良好的倍率性能。这项工作为锌离子电池提供了一种有前途的正极材料,并为其未来在可再生能源存储中的应用开辟了新的可能性。关键词:MoS 2;热分解;埃洛石模板;正极;水系锌离子电池。1. 引言
几十年来。 [1] 目前商业化锂离子电池的能量密度受到层状结构正极材料(如 LiCoO 2 和 LiNixMnyCo1−x−yO2)的限制,由于材料晶格中 Li+ 主位点有限,只能提供小于 220 mAh g−1 的比容量。 [2] 此外,锂离子电池市场的快速扩张导致钴和镍价格飙升(2022 年钴金属价格高达 90 美元/千克)。因此,迫切需要探索高能量密度、低成本的无钴、无镍正极材料。转化型材料通常由 Fe、Cu、O 和 S 等价格较便宜且环境友好的元素组成,其容量比插层型电极材料高得多。 [3] 在各种转化化合物中,过渡金属氟化物(MF x )既提供> 2.0 V 的高氧化还原电位(由于金属氟化物键的高离子性),又提供大容量,因为每单位分子式允许多个电子转移,从而实现相当高的理论能量密度。[4] 转化正极面临的一个主要挑战是循环稳定性。优化的 Fe 基氟化物如 FeF 2 、FeF 3 、FeOF 和 Fe 0.9 Co 0.1 OF 可以稳定地充电/放电几百次循环。[5] 然而,Fe 基正极的能量密度仍然不够高。氟化铜(CuF 2 )比 Fe 基氟化物提供了更高的比能量密度(1874 Wh kg −1 ),因为它对 Li/Li + 的理论电位高达 3.55 V,理论容量为 528 mAh g −1 。[6]