3. 行业和技术路线图。 .�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�. 26 3.1. 电池材料 .�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�. 29 3.1.1.正极材料���������������������������������������������������������������������������������������������������������������������������������������������������������� 29 3.1.2. 正极材料产能 �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 35 3.1.3. 负极材料�� ...其他电池组件 ���������������������������������������������������������������������������������������������������������� 41 3.1.6. 按化学成分划分的电池生产能力 �������������������������������������������������������������������������� 43 3.2. 电池单元 �. ...电池单元设计趋势 �������������������������������������������������������������������������������������������������������������������������������������������������� 45 3.2.2. 电池生产趋势 �� ... 49 3.2.3. 按制造商位置和来源划分的电池生产能力 ������������������������������������������������������������������������������������������ 53 3.2.4. 按格式划分的电池生产能力 ���������������������������������������������������������������������������������������������������������������������������������������������������������� 55 3.2.5. 生产实施和行业结构的合理性 �������������������������������������������������������������������������������������������������������������������������������������������� 57 3.3.电池组和系统 �.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�. 59 3.4. 电池回收 �.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�. 65
摘要 摘要 © 2020 Elsevier BV Li2S 作为锂硫正极材料的潜在候选材料的商业化因其低电子电导率、“穿梭效应”和初始能垒而受到阻碍。在这项工作中,通过基于溶液的化学方法制备了纳米级 Li2S 颗粒涂覆的碳纳米纤维。受益于这种合成方法,可以获得均匀的 Li2S 层而没有任何团聚。由于 Li2S 颗粒的尺寸较小,在第一次充电过程中观察到较小的能垒,这意味着以较小的截止电压更容易激活 Li2S。此外,碳纳米纤维作为基质可以增强正极的导电性。此外,为了验证所制备材料的潜在实际应用价值,我们制备了活性材料负载量高(约 3 mg cm−2)的 Li2S 正极,其表现出优异的循环和倍率性能,在 0.1C 时初始比容量为 916.2 mA hg−1,在 2 C 时仍可达到 321 mA hg−1 的容量。这种良好的性能可以归因于独特的基于溶液的合成方法,从而获得了涂覆在碳纳米纤维上的小而均匀的 Li2S 颗粒。
dz2 方向的键与 d xy 平面上的键结合,从而显著减轻 JT 畸变并抑制放电至 2.0 V 时的相变。按照这种策略,制备的尖晶石基正极实现了约 290 mA hg -1 的高可逆容量和高达 957 W h kg -1 的能量密度,并且循环稳定性得到改善。这项工作为传统尖晶石正极以低成本和可持续的方式应用于高能量密度 LIBs 找到了新的机会。关键词:锂离子电池;尖晶石基正极;局部结构连接;限制 Jahn-Teller 畸变;高能量密度。1. 简介为了应对电动汽车 (EV) 和电网储能系统 (PGESS) 对锂离子电池 (LIBs) 日益增长的需求,关键挑战之一是设计低成本、高能量密度的正极材料。 [1-3] 与现有的钴基和镍基层状正极材料(如 LiCoO 2 和 LiNi 1-xy Co x Mn y O 2(0 ≤ x+y ≤ 0.5))相比,锰基尖晶石氧化物 LiMn 2 O 4 因成本低、工作电压可接受而引起了广泛关注。[4-6] LiMn 2 O 4 已广泛应用于便携式移动电源,但由于能量密度低(<500 W h kg -1 ),未在电动汽车和 PGESS 中使用。用 Ni 部分替代 Mn,尖晶石 LiMn 2-x Ni x O 4(0< x <1)(LMNO)在接近 4.7 V 处表现出由 Ni 2+ /Ni 4+ 氧化还原对贡献的额外电位平台,将能量密度推高至 580 W h kg -1 。 [7-10] 尽管如此,由于只有尖晶石骨架上 8a 位上的锂离子可以可逆地嵌入/脱出,因此相对较低的容量(<140 mA hg -1 )可以进一步改善。 为了获得更高的容量,一种方法是将电位窗口从 3.0 - 4.8 V 扩展到 2.0 - 4.8 V,因为额外的锂离子可以在 3.0 V 以下嵌入 16c 位。 在此过程中,Mn 4+ 会还原到接近 Mn 3+ 的低价态,从而引起严重的 Jahn-Teller (JT) 畸变和从立方相到四方相(1T)的剧烈相变。 [11,12] 晶格对称性降低导致的晶格体积变化大和各向异性应变大,会在块体中引起裂纹,从而导致电接触丧失和结构降解,最终导致容量衰减。因此,通过抑制JT畸变来抑制立方-四方相变是提高3.0 V以下循环稳定性的关键。长期以来,尖晶石正极的研究主要集中在进一步提高结构稳定性,通过用Li、[6,13]Mg、[14,15]替代Mn或Ni
吩嗪是橡胶防老剂RT-base生产废渣的主要成分,仅我国RT-base废渣中吩嗪的年产量就超过1000吨,目前产生的吩嗪主要通过燃烧处理,每年释放出3500多吨二氧化碳和大量的氮氧化物。此外,吩嗪还是一种生物质可衍生的物质,可以从取之不尽的木质素衍生的邻苯二酚中高效、大量地生产。15,16吩嗪及其衍生物具有很强的氧化还原活性,被发现是优秀的OEM,包括阳极或阴极材料,在实际应用中显示出巨大的潜力。17 – 20其中,二氢吩嗪(DHP)衍生的正极材料表现出优异的性能,甚至与商业正极材料相媲美。 18,21 – 23 然而,该类材料的实际应用仍存在一些障碍需要解决。需要进一步努力提高它们的易获得性和比容量,即优化合成工艺和降低分子中非活性部分的比例。之前,我们报道了一种稳定但电容较低的 DHP 聚合物 (PVBPZ),其比容量仅为 95 mA hg − 1。PVBPZ 的低比容量主要是由于苄基部分在高电压下的电化学不稳定性,导致其无法利用第二氧化还原电位。因此,PVBPZ 只能
大量研究证实,LIC兼具锂离子电池和超级电容器的储能机制优势,被认为是最有前途的储能装置之一。6,7 LIC的储能过程包括电容性正极的离子吸收/解吸和电池性负极的Li +嵌入/脱嵌过程。两种电极工作电压范围的差异有效拓展了LIC的电位窗口,有利于提高能量密度。8 – 10然而,LIC电容性正极和电池性负极之间的动力学不平衡导致其在大电流充放电下性能显著下降。11,12因此,开发具有快速Li +的电池性负极材料十分必要。
开发新材料是应对电池技术挑战的关键。离子液体基聚合物电解质具有不可燃性和高热稳定性,可以降低爆炸风险。LiMPO 4 正极(M=Fe、Mn、Co……)的使用有助于提高热稳定性,这是因为金属和氧之间存在共价键。有机电极具有灵活性,可以促进可充电锂电池的回收利用。在本研究中,这些材料已被用于超安全、灵活、绿色和高倍率锂电池。使用拉曼、XPS、DSC 和介电光谱研究了它们的物理性质,并结合一些 LiMPO 4 正极探索了离子液体基聚合物电解质的电化学性能。研究了离子配位、离子电导率、氧化稳定性、电极材料的溶解和电化学性质。为了克服有机电极材料含碳量高、活性物质溶解等缺点,本文还研究了新型纳米纤维有机自由基聚合物[(聚(2,2,6,6-四甲基哌啶氧-4-基甲基丙烯酸酯)(PTMA)]电极、含有甲氧基官能团(CH3O)的新型有机正极材料2,3,6,7,10,11-六甲氧基三苯并菲(HMTP)]和Py14TFSI基聚合物电解质。
锌电极处的树突状生长和形状变化,[4-10]锌 - 空气电池的性能仍然受到正极氧反应的缓慢动力学的限制。[1,11]已大力努力发展催化剂,以降低正极反应的过电势。在这种情况下,双功能催化剂的发展既可以使充电期间的氧气进化反应(OER)和放电期间的氧还原反应(ORR)受到了最近的关注。[1,2,11 - 13]但是,即使在锌 - 空气电池中具有高性能双功能催化剂,其预期的能量效率也接近65%,[14]必不可少的进一步改进,以进一步改进竞争性实施。Balamurugan等。[15]
目录 页码 执行摘要 4 关于作者 5 简介 5 • 本评论的重点 • 固态 / 半固态锂离子电池组件 • 当今的固态 / 半固态锂离子电池市场 • (预计)市场发布 – 固态 / 半固态锂离子电池电动汽车 基于人工智能的商业相关专利识别 12 • 自 2019 年以来的商业相关专利系列 / 实用新型数量 技术决策树 30 • 固体电解质 – 类型 – 已推出或即将推出市场 • 固体电解质 – 类型 – 根据专利申请 • 固体电解质 – 概念 • 固体电解质 – 不含磷的氧化物 – (可能)结晶 • 固体电解质 – 磷酸盐 / 含 P 的氧化物 – (可能)结晶 • 固体电解质 – 氧化物 / 磷酸盐 – (可能)玻璃 • 固体电解质 – 氢氧化物 • 固体电解质 –硫化物•固体电解质 – 减缓硫化氢排放•固体电解质 – 聚合物•固体电解质 – 卤化物 / 氧卤化物•薄膜电池用固体电解质•固体电解质 – 硼烷•锂(钠)盐•增塑剂•液体电解质组分 / 液体添加剂•固体电解质添加剂 / 不含锂的支撑和填充材料•固体电解质粘合剂•负极活性材料•正极活性材料•负极添加剂•正极添加剂•负极粘合剂•正极粘合剂