参考文献:1 Adams R 等人。Front Immunol 2020;11:1894;2 Al-Janabi A 和 Yiu ZZN。Psoriasis (Auckl) 2022;12:1–141;3 Warren RB 等人。N Engl J Med 2021;385(2):130–141,NCT03412747;4 Reich K 等人。Lancet 2021;397(10273):487–498,NCT03370133;5 Gordon KB 等人。Lancet 2021;397(10273):475–486,NCT03410992;6 Gordon KB 等人。 JAMA Dermatol 2022;158(7):735–744,NCT03598790;7 Reich K 等人 N Engl J Med 2021;385(2):142–152,NCT03536884。作者贡献:对研究构思/设计或数据获取/分析/解释做出重大贡献:KBG、DT、MG、YO、BS、LP、DD、JMLP、PG;起草出版物或对重要的知识内容进行批判性审查:KBG、DT、MG、YO、BS、LP、DD、JMLP、PG;出版物的最终批准:KBG、DT、MG、YO、BS、LP、DD、JMLP、PG。作者披露:KBG:从 AbbVie、Almirall、Amgen、Boehringer Ingelheim、Bristol Myers Squibb、Celgene、Dermira、Eli Lilly and Company、Janssen、Novartis、Pfizer、Sun Pharma 和 UCB 获得咨询费;从 AbbVie、Bristol Myers Squibb、Celgene、Eli Lilly and Company、Janssen、Novartis 和 UCB 获得研究支持。 DT:AbbVie、Almirall、Amgen、Boehringer Ingelheim、Bristol Myers Squibb、Celltrion、Eli Lilly and Company、Galderma、Janssen、Kyowa Kirin、LEO Pharma、L'Oreal、New Bridge、Novartis、Pfizer、Regeneron、Samsung、Sanofi、Target-RWE、UCB 和 Vichy 的研究员和/或顾问/顾问;获得过 AbbVie、LEO Pharma 和 Novartis 的资助。 MG:AbbVie、Acelyrin、Akros、Amgen、AnaptysBio、Arcutis、Aristea、Aslan、Bausch Health、Boehringer Ingelheim、Bristol Myers Squibb、Dermavant、Dermira、Eli Lilly and Company、Galderma、GSK、Incyte、JAMP Pharma、Janssen、Kyowa Kirin、L'Oreal、MedImmune、Meiji、MoonLake Immunotherapeutics、Nektar Therapeutics、Nimbus、Novartis、Pfizer、Regeneron、Reistone、Sanofi Genzyme、Sun Pharma、Takeda、Tarsus、UCB、Union 和 Ventyx 的研究员、演讲者、顾问或顾问委员会成员。YO:获得过 Eisai、Maruho、Shiseido 和 Torii Pharmaceutical 的研究资助; AbbVie、Amgen、Boehringer Ingelheim、Bristol Myers Squibb、Eli Lilly and Company、Janssen 和 Sun Pharma 的咨询和顾问委员会协议;AbbVie、Amgen、Boehringer Ingelheim、Bristol Myers Squibb、Celgene、Eisai、Eli Lilly and Company、Janssen、Jimro、Kyowa Kirin、LEO Pharma、Maruho、Novartis、Pfizer、Sanofi、Sun Pharma、Taiho、Tanabe-Mitsubishi、Torii Pharmaceutical 和 UCB 的演讲局;由 AbbVie、Amgen、Boehringer Ingelheim、Bristol Myers Squibb、Celgene、Eli Lilly and Company、Janssen、LEO Pharma、Maruho、Pfizer、Sun Pharma 和 UCB 赞助的临床试验。 BS:AbbVie、Acelyrin、Alamar、Almirall、Alumis、Amgen、Arcutis、Arena、Aristea、Asana、Boehringer Ingelheim、Bristol Myers Squibb、Capital One、Celltrion、CorEvitas、Dermavant、Eli Lilly and Company、Imagenebio、Janssen、Kangpu Pharmaceuticals、LEO Pharma、Maruho、Meiji Seika Pharma 的顾问(酬金)Monte Carlo、诺华、辉瑞、Protagonist、Rapt、Regeneron、赛诺菲健赞、SG Cowen、Sun Pharma、武田、UCB、Union Therapeutics、Ventyxbio 和 vTv Therapeutics;Connect Biopharma、Mendera Health 的股票期权;AbbVie、Arcutis、Dermavant、礼来、Incyte、杨森、Regeneron 和赛诺菲健赞的发言人;CorEvitas 银屑病登记处的科学联合主任(咨询费);CorEvitas 银屑病登记处的研究员;银屑病和银屑病关节炎杂志的主编(酬金)。LP、DD、JMLP:UCB 的员工和股东。 PG:AbbVie、Abiogen、Almirall、Celgene、Eli Lilly and Company、Janssen、LEO Pharma、Merck、MSD、Novartis、Otsuka、Pfizer、Pierre Fabre、Sanofi 和 UCB 的顾问。致谢:这些研究由 UCB 资助。我们要感谢为这些研究做出贡献的患者和他们的照顾者以及研究人员和他们的团队。作者感谢德国蒙海姆 UCB 的 Susanne Wiegratz 硕士和英国斯劳 UCB 的 Joe Dixon 博士提供出版协调服务,感谢英国曼彻斯特 Costello Medical 的 Sana Yaar 博士提供医学写作支持和编辑协助,感谢英国伦敦 Costello Medical 创意团队的 Danielle Hart 提供平面设计协助。制作此海报的所有费用均由 UCB 资助。
Gene Yeo PhD MBA 是加州大学圣地亚哥分校 (UCSD) 细胞和分子医学教授,基因组医学研究所的创始成员,也是 UCSD 干细胞项目和摩尔斯癌症中心的成员。Yeo 博士拥有伊利诺伊大学香槟分校化学工程学士学位和经济学学士学位,麻省理工学院计算神经科学博士学位以及 UCSD 拉迪管理学院 MBA 学位。Yeo 博士担任 UCSD 生物信息学和系统生物学研究生课程联合主任以及遗传学 T32 培训项目副主任。Yeo 博士是一位计算和实验科学家,为 RNA 生物学和治疗学做出了贡献。他的主要研究兴趣是了解 RNA 加工的重要性以及 RNA 结合蛋白 (RBP) 在发育和疾病中的作用。自成立以来,Yeo 博士的实验室一直致力于揭示 RBPs 影响基因表达的分子原理、RBP 介导的转录后基因网络如何促进干细胞和大脑的细胞稳态,以及 RBPs 突变如何导致人类发育和神经退行性疾病。他的实验室率先在人类疾病相关系统中采用计算算法和实验方法,以进行系统和大规模研究。这些多学科方法结合了机器学习、生物化学、分子生物学、基因组学、化学和材料研究。他的实验室开发了系统、稳健且可采用的方法,例如用于大规模绘制蛋白质-RNA 相互作用的增强型 CLIP(Van Nostrand 等人,Nature Methods,2016 年)。 Gene 实验室是研究 RBPs 的主要资源贡献者,这些资源使生物科学许多领域的数百个实验室能够利用这些资源,例如世界上最大的 RBP 特异性抗体资源,这有助于生成和解释迄今为止最全面的数百种 RBP 的 RBP 结合位点图谱 (Van Nostrand 等人,Nature,2020)。他们还系统地发现了在应激过程中凝结成 RNA 颗粒的 RBPs,并展示了利用这些 RBPs 治疗神经退行性疾病的策略 (Markmiller 等人,Cell,2018;Fang 等人,Neuron,2019;Wheeler 等人,Nature Methods,2020)。他的实验室还展示了使用 CRISPR/Cas 蛋白的体内 RNA 靶向 (Nelles 等人,Cell,2016),并在重复扩增障碍中进行了概念验证 (Batra 等人,Cell,2017;Batra 等人,Nature Biomedical Engineering,2020)。最近,他的实验室开发了 STAMP 技术(Brannan 等人,Nature Methods,2021),这是第一种在转录组范围内识别 RNA 结合蛋白位点和以单细胞分辨率进行翻译测量的方法。Yeo 实验室的工作被《Nature Methods》和《Nature Reviews Genetics》列为“值得关注的方法”,并被《Discover》杂志列为头条新闻。这些努力促成了开发 RNA 相关疾病药物的临床项目。Yeo 博士撰写了 180 多篇同行评议出版物,包括神经退行性疾病、RNA 处理、计算生物学和干细胞模型领域的特邀书籍章节和评论文章;并担任两本 RNA 结合蛋白生物学书籍的编辑。Gene 是 Cell Reports、Cell Research 和 eLife 杂志的编辑委员会成员,也是 Review commons 的顾问委员会成员。Gene 于 2008 年加入加州大学圣地亚哥分校担任助理教授,2014 年晋升为副教授,2016 年晋升为教授。Gene 是索尔克研究所第一位克里克-雅各布斯研究员 (2005-2008)。其他奖项包括阿尔弗雷德·P·斯隆奖学金(表彰他在计算分子生物学领域的工作)(2011 年)、Alpha Chi Sigma-Zeta Chapter Krug 讲师奖(2016 年)、新加坡国家研究基金会访问研究员奖(2017 年)、国际 RNA 学会颁发的首届早期职业奖(2017 年)、Blavatnik 国家奖决赛入围者(2018 年和 2019 年)、圣地亚哥 Xconomy 奖“大创意”获得者(2019 年)和跨领域类别的高被引研究员(2019 年和 2020 年),表彰过去十年全球最具影响力的研究人员。Gene 还是 Paul Allen 杰出研究员(2020 年),并获得了 RNA 学会颁发的 2021 年 Elisa Izaurralde 研究、教学和服务创新奖。 Gene 是 Locanabio、Eclipse Bioinnovations、Enzerna、Proteona、Trotana 和 Circ Bio 等生物技术公司的联合创始人。Gene 曾任或担任 Allen Institute of Immunology、Locanabio、Eclipse Bioinnovations、Proteona、CircBio、Aquinnah、Cell Applications、Tecan、LGC、Sardona Therapeutics、Ladder Therapeutics、Insitro、Trotana、Nooma 和 Ribometrix 的科学顾问委员会成员。Gene 是 Accelerator Life Sciences Partners 的高级顾问。Gene 的实验室目前或之前曾得到美国国立卫生研究院、美国国家科学基金会、加州再生医学研究所、TargetALS、ALS 基金会、国防部、肌强直性营养不良协会、肌强直性营养不良基金会、陈-扎克伯格倡议、武田、基因泰克和罗氏的支持。 Gene 是圣地亚哥新冠疫情研究企业网络 (SCREEN,2020 年) 的创始人,也是圣地亚哥新冠疫情流行病学和研究联盟 (SEARCH,2020 年) 的创始成员。SCREEN 在圣地亚哥拥有约 1000 名科学家成员,专注于基层研究协调和社区外展。SEARCH 专注于病毒流行情况的流行病学研究,完成了一项涉及 12000 人的病毒传播研究。Gene 是 EXCITE (快速新冠识别环境) 实验室的联合主任,该实验室在 UCSD 进行新冠高通量测试,并且是 UCSD 重返学习指导委员会的成员。Gene 是 Biocom 重返工作岗位工作组的成员。吉恩是 DASL(2020 年多样性与科学讲座系列)的创始人,该系列为科学家提供了一个讨论多样性、公平性和包容性挑战并庆祝他们的科学成就的机会。吉恩于 1999 年在军官学校获得荣誉之剑(最高荣誉),并曾在新加坡海军担任海军军官。吉恩已经完成了 2 次全程铁人三项赛和多次半程铁人三项赛、奥运会铁人三项赛、短距离铁人三项赛、全程马拉松和半程马拉松,但现在花时间进行攀岩。
b'[2] C. Yan,X。Duanmu,L。Zeng,B。Liu,Z。歌曲,线粒体DNA:分布,突变和消除,细胞,8(2019)。[3] F. Liu,D.E。Sanin,X。Wang,肺癌中的线粒体DNA,实验医学与生物学进展,1038(2017)9-22。[4] J. Zhang,J。[5] P.P.Jia,M。Junaid,Y.B。 MA,F。Ahmad,Y.F。 jia,W.G。 li,D.S。 pei,人类DNA2(HDNA2)作为癌症和其他疾病的潜在靶点的作用:系统评价,DNA修复(AMST),59(2017)9-19。 [6] A. D \ XC3 \ Xadaz-Talavera,C。Montero-Conde,L.J。 Leandro-Garc \ XC3 \ Xada,M。Robledo,Primpol:DNA复制酶的突破和潜在的癌症治疗新靶标,生物分子,12(2022)。 [7] A.O. Giacomelli,X。Yang,R.E。 lintner,J.M. McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Jia,M。Junaid,Y.B。MA,F。Ahmad,Y.F。 jia,W.G。 li,D.S。 pei,人类DNA2(HDNA2)作为癌症和其他疾病的潜在靶点的作用:系统评价,DNA修复(AMST),59(2017)9-19。 [6] A. D \ XC3 \ Xadaz-Talavera,C。Montero-Conde,L.J。 Leandro-Garc \ XC3 \ Xada,M。Robledo,Primpol:DNA复制酶的突破和潜在的癌症治疗新靶标,生物分子,12(2022)。 [7] A.O. Giacomelli,X。Yang,R.E。 lintner,J.M. McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。MA,F。Ahmad,Y.F。jia,W.G。li,D.S。pei,人类DNA2(HDNA2)作为癌症和其他疾病的潜在靶点的作用:系统评价,DNA修复(AMST),59(2017)9-19。[6] A. D \ XC3 \ Xadaz-Talavera,C。Montero-Conde,L.J。Leandro-Garc \ XC3 \ Xada,M。Robledo,Primpol:DNA复制酶的突破和潜在的癌症治疗新靶标,生物分子,12(2022)。[7] A.O.Giacomelli,X。Yang,R.E。 lintner,J.M. McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Giacomelli,X。Yang,R.E。lintner,J.M.McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。McFarland,M。Duby,J。Kim,T.P。D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。D.Y. HowardTakeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Takeda,S.H。ly,E。Kim,H.S。Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Aguirre,J.G。Doench,F。Piccioni,C.W.M。Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Roberts,M。Meyerson,G。Getz,C.M。Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Johannessen,D.E。根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。[8] G.A.Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Fontana,H.L。[9] C.Y.dai,C.C。ng,G.C.C。Hung,I。Kirmes,L.A。Hughes,Y。gahlon,线粒体DNA缺失形成的复制和修复机制,核酸res,48(2020)11244-11258。du,C.A。Brosnan,A。Ahier,A。Hahn,C.M。 Haynes,O。Rackham,A。Filipovska,S。Zuryn,ATFS-1,通过促进转录修复,自然细胞生物学,25(2023)1111-1120来抵消线粒体DNA损伤。 [10] L. Ou,H。Liu,C。Peng,Y. [11] H. Liu,J。Weng,C.L.H。 Huang,A.P。 杰克逊,癌症的电压门控钠通道,生物标志物研究,12(2024)70。 [12] H. Liu,A。Dong,A.M。 Rasteh,P。Wang,J。Weng,乳腺癌中新型T细胞CD8 +标记的鉴定,Scientific Reports,14(2024)19142。 [13] H. Liu,T。Tang,基于MAPK信号途径的胶质瘤亚型,机器学习风险模型和关键集线器蛋白识别,科学报告,13(2023)19055。。 [14] H. Liu,T。Tang,《泛滥成灾与基因集的泛癌遗传分析》,癌症遗传学,278-279(2023)91-103。 [15] H. Liu,T。Tang,《胶质瘤IGFBP的生物信息学研究》,涉及其诊断,预后和治疗预测值,AM J Transl Res,15(2023)2140-2155。 [16] H. Liu,T。Tang,《泛滥成灾基因套件的泛 - 癌遗传分析》,Biorxiv,(2023),2023.2002。 2025.529997。 [17] H. Liu,库糖凋亡在肾脏肾透明细胞癌中的表达和潜在免疫受累,癌症遗传学,274-275(2023)21-25。Brosnan,A。Ahier,A。Hahn,C.M。Haynes,O。Rackham,A。Filipovska,S。Zuryn,ATFS-1,通过促进转录修复,自然细胞生物学,25(2023)1111-1120来抵消线粒体DNA损伤。[10] L. Ou,H。Liu,C。Peng,Y.[11] H. Liu,J。Weng,C.L.H。Huang,A.P。 杰克逊,癌症的电压门控钠通道,生物标志物研究,12(2024)70。 [12] H. Liu,A。Dong,A.M。 Rasteh,P。Wang,J。Weng,乳腺癌中新型T细胞CD8 +标记的鉴定,Scientific Reports,14(2024)19142。 [13] H. Liu,T。Tang,基于MAPK信号途径的胶质瘤亚型,机器学习风险模型和关键集线器蛋白识别,科学报告,13(2023)19055。。 [14] H. Liu,T。Tang,《泛滥成灾与基因集的泛癌遗传分析》,癌症遗传学,278-279(2023)91-103。 [15] H. Liu,T。Tang,《胶质瘤IGFBP的生物信息学研究》,涉及其诊断,预后和治疗预测值,AM J Transl Res,15(2023)2140-2155。 [16] H. Liu,T。Tang,《泛滥成灾基因套件的泛 - 癌遗传分析》,Biorxiv,(2023),2023.2002。 2025.529997。 [17] H. Liu,库糖凋亡在肾脏肾透明细胞癌中的表达和潜在免疫受累,癌症遗传学,274-275(2023)21-25。Huang,A.P。杰克逊,癌症的电压门控钠通道,生物标志物研究,12(2024)70。[12] H. Liu,A。Dong,A.M。 Rasteh,P。Wang,J。Weng,乳腺癌中新型T细胞CD8 +标记的鉴定,Scientific Reports,14(2024)19142。[13] H. Liu,T。Tang,基于MAPK信号途径的胶质瘤亚型,机器学习风险模型和关键集线器蛋白识别,科学报告,13(2023)19055。[14] H. Liu,T。Tang,《泛滥成灾与基因集的泛癌遗传分析》,癌症遗传学,278-279(2023)91-103。[15] H. Liu,T。Tang,《胶质瘤IGFBP的生物信息学研究》,涉及其诊断,预后和治疗预测值,AM J Transl Res,15(2023)2140-2155。[16] H. Liu,T。Tang,《泛滥成灾基因套件的泛 - 癌遗传分析》,Biorxiv,(2023),2023.2002。2025.529997。[17] H. Liu,库糖凋亡在肾脏肾透明细胞癌中的表达和潜在免疫受累,癌症遗传学,274-275(2023)21-25。[18] L. Hengrui,《中药用于癌症治疗中使用的有毒药物的例子》,J Tradit Chin Med,43(2023)209-210。[19] H. Liu,J。Weng,《 Rad51的Pan-Cancer生物信息学分析》,涉及诊断,预后和治疗预测的值,肿瘤学的前沿,12(2022)。[20] H. Liu,J。Weng,胶质瘤中细胞周期蛋白依赖性激酶2(CDK2)的全面生物信息学分析,Gene,(2022)146325。[21] H. Liu,T。Tang,Pan-Cancer的库糖胞化和铜代谢相关的基因集,肿瘤学的边界,12(2022)952290。[22] H. Liu,Y。Li,Cornichon家族AMPA受体辅助蛋白4(CNIH4)在头部和颈部鳞状细胞癌中的潜在作用,癌症生物标志物:疾病标志物A部分(2022)。[23] H. Liu,J.P。Dilger,J。Lin,pan-Cancer-Biodorminicals-Informinical-Informicals Trpm7的文献综述,Pharmacol Ther(2022)108302。[24] H. Liu,cuproptosis Gene Set的Pan-Canter概况,《美国癌症研究杂志》,第12期(2022)4074-4081。[25] Y. Liu,H。Liu,氨基酰基TRNA合成酶复合物的临床能力相互作用多功能蛋白1(AIMP1),用于头颈鳞状细胞癌,癌症生物标志物:疾病标志物A节A节(20222)。[26] Y. Li,H。Liu,Y。Han,在头部和颈部鳞状细胞癌中,Cornichon家族AMPA受体辅助蛋白4(CNIH4)的潜在作用,研究方形(2021)。 '
作者披露Mimati,Genentech,Merck和Novartis的M.V.N报告咨询/咨询角色;从Mirati,Astrazeneca,Pfizer,Novartis,Genentech,Alaunos和Checkmate向机构进行研究资助。 A.J.C. 报告了MJH Life Sciences的咨询Honoraria。 J.K.H报告了杰克逊实验室基因组肿瘤委员会的顾问角色。 G.M报告了阿斯利康,BMS,Roche,Gilead的咨询角色和演讲费。 M.A。 报告来自ViaTris的咨询/咨询角色;从桑多兹(Sandoz)旅行。 P.B. 报告了阿斯利康,贝吉尼,布里斯托尔·迈尔斯·索尔(Bristol Myers Squibb),罗氏(Roche)的咨询/咨询角色; Roche辉瑞公司的研究资金; Amgen的Daiichi Sankyo的虚拟会议订阅。 S.C.S报告Amgen,Genentech,Foundation Medicine的咨询/咨询角色。 M.S. 报告了Amgen,Astrazeneca,Boehringer Ingelheim,Janssen,Novartis,Novartis,Pfizer,Roche,Roche,Sanofi-Aventis,Siemens Healthineers,Takeda和Amgen,Amgen,Dracen Pharmaceuticals,Janssen,Janssen,Janssen,Novartis,Pfizer和Takeda。 P.C. 报告了来自BMS,阿斯利康岛,诺华,诺华,BMS,Illumina,Illumina,Astrazeneca,Novarkeneca,Novastis,Thermo-Fisher,MSD,Roche,Roche和Chugai和BMS的咨询委员会的酬金。 S.B.G. 报告了阿斯利康,Boehringer Ingelheim,Bristol-Myers Squibb,Genentech,Amgen,Amgen,Blueprint Medicine,Sanofi Genzyme,Daiichi-Sankyo,Regeneron,Regeneron,Takeda和Janssen的报告咨询/顾问委员会成员;来自阿斯利康,Boehringer Ingelheim和Mirati的研究资金。 B.R. M.N. J.Z.作者披露Mimati,Genentech,Merck和Novartis的M.V.N报告咨询/咨询角色;从Mirati,Astrazeneca,Pfizer,Novartis,Genentech,Alaunos和Checkmate向机构进行研究资助。A.J.C. 报告了MJH Life Sciences的咨询Honoraria。 J.K.H报告了杰克逊实验室基因组肿瘤委员会的顾问角色。 G.M报告了阿斯利康,BMS,Roche,Gilead的咨询角色和演讲费。 M.A。 报告来自ViaTris的咨询/咨询角色;从桑多兹(Sandoz)旅行。 P.B. 报告了阿斯利康,贝吉尼,布里斯托尔·迈尔斯·索尔(Bristol Myers Squibb),罗氏(Roche)的咨询/咨询角色; Roche辉瑞公司的研究资金; Amgen的Daiichi Sankyo的虚拟会议订阅。 S.C.S报告Amgen,Genentech,Foundation Medicine的咨询/咨询角色。 M.S. 报告了Amgen,Astrazeneca,Boehringer Ingelheim,Janssen,Novartis,Novartis,Pfizer,Roche,Roche,Sanofi-Aventis,Siemens Healthineers,Takeda和Amgen,Amgen,Dracen Pharmaceuticals,Janssen,Janssen,Janssen,Novartis,Pfizer和Takeda。 P.C. 报告了来自BMS,阿斯利康岛,诺华,诺华,BMS,Illumina,Illumina,Astrazeneca,Novarkeneca,Novastis,Thermo-Fisher,MSD,Roche,Roche和Chugai和BMS的咨询委员会的酬金。 S.B.G. 报告了阿斯利康,Boehringer Ingelheim,Bristol-Myers Squibb,Genentech,Amgen,Amgen,Blueprint Medicine,Sanofi Genzyme,Daiichi-Sankyo,Regeneron,Regeneron,Takeda和Janssen的报告咨询/顾问委员会成员;来自阿斯利康,Boehringer Ingelheim和Mirati的研究资金。 B.R. M.N. J.Z.A.J.C.报告了MJH Life Sciences的咨询Honoraria。J.K.H报告了杰克逊实验室基因组肿瘤委员会的顾问角色。G.M报告了阿斯利康,BMS,Roche,Gilead的咨询角色和演讲费。M.A。 报告来自ViaTris的咨询/咨询角色;从桑多兹(Sandoz)旅行。 P.B. 报告了阿斯利康,贝吉尼,布里斯托尔·迈尔斯·索尔(Bristol Myers Squibb),罗氏(Roche)的咨询/咨询角色; Roche辉瑞公司的研究资金; Amgen的Daiichi Sankyo的虚拟会议订阅。 S.C.S报告Amgen,Genentech,Foundation Medicine的咨询/咨询角色。 M.S. 报告了Amgen,Astrazeneca,Boehringer Ingelheim,Janssen,Novartis,Novartis,Pfizer,Roche,Roche,Sanofi-Aventis,Siemens Healthineers,Takeda和Amgen,Amgen,Dracen Pharmaceuticals,Janssen,Janssen,Janssen,Novartis,Pfizer和Takeda。 P.C. 报告了来自BMS,阿斯利康岛,诺华,诺华,BMS,Illumina,Illumina,Astrazeneca,Novarkeneca,Novastis,Thermo-Fisher,MSD,Roche,Roche和Chugai和BMS的咨询委员会的酬金。 S.B.G. 报告了阿斯利康,Boehringer Ingelheim,Bristol-Myers Squibb,Genentech,Amgen,Amgen,Blueprint Medicine,Sanofi Genzyme,Daiichi-Sankyo,Regeneron,Regeneron,Takeda和Janssen的报告咨询/顾问委员会成员;来自阿斯利康,Boehringer Ingelheim和Mirati的研究资金。 B.R. M.N. J.Z.M.A。报告来自ViaTris的咨询/咨询角色;从桑多兹(Sandoz)旅行。P.B. 报告了阿斯利康,贝吉尼,布里斯托尔·迈尔斯·索尔(Bristol Myers Squibb),罗氏(Roche)的咨询/咨询角色; Roche辉瑞公司的研究资金; Amgen的Daiichi Sankyo的虚拟会议订阅。 S.C.S报告Amgen,Genentech,Foundation Medicine的咨询/咨询角色。 M.S. 报告了Amgen,Astrazeneca,Boehringer Ingelheim,Janssen,Novartis,Novartis,Pfizer,Roche,Roche,Sanofi-Aventis,Siemens Healthineers,Takeda和Amgen,Amgen,Dracen Pharmaceuticals,Janssen,Janssen,Janssen,Novartis,Pfizer和Takeda。 P.C. 报告了来自BMS,阿斯利康岛,诺华,诺华,BMS,Illumina,Illumina,Astrazeneca,Novarkeneca,Novastis,Thermo-Fisher,MSD,Roche,Roche和Chugai和BMS的咨询委员会的酬金。 S.B.G. 报告了阿斯利康,Boehringer Ingelheim,Bristol-Myers Squibb,Genentech,Amgen,Amgen,Blueprint Medicine,Sanofi Genzyme,Daiichi-Sankyo,Regeneron,Regeneron,Takeda和Janssen的报告咨询/顾问委员会成员;来自阿斯利康,Boehringer Ingelheim和Mirati的研究资金。 B.R. M.N. J.Z.P.B.报告了阿斯利康,贝吉尼,布里斯托尔·迈尔斯·索尔(Bristol Myers Squibb),罗氏(Roche)的咨询/咨询角色; Roche辉瑞公司的研究资金; Amgen的Daiichi Sankyo的虚拟会议订阅。S.C.S报告Amgen,Genentech,Foundation Medicine的咨询/咨询角色。 M.S. 报告了Amgen,Astrazeneca,Boehringer Ingelheim,Janssen,Novartis,Novartis,Pfizer,Roche,Roche,Sanofi-Aventis,Siemens Healthineers,Takeda和Amgen,Amgen,Dracen Pharmaceuticals,Janssen,Janssen,Janssen,Novartis,Pfizer和Takeda。 P.C. 报告了来自BMS,阿斯利康岛,诺华,诺华,BMS,Illumina,Illumina,Astrazeneca,Novarkeneca,Novastis,Thermo-Fisher,MSD,Roche,Roche和Chugai和BMS的咨询委员会的酬金。 S.B.G. 报告了阿斯利康,Boehringer Ingelheim,Bristol-Myers Squibb,Genentech,Amgen,Amgen,Blueprint Medicine,Sanofi Genzyme,Daiichi-Sankyo,Regeneron,Regeneron,Takeda和Janssen的报告咨询/顾问委员会成员;来自阿斯利康,Boehringer Ingelheim和Mirati的研究资金。 B.R. M.N. J.Z.S.C.S报告Amgen,Genentech,Foundation Medicine的咨询/咨询角色。M.S. 报告了Amgen,Astrazeneca,Boehringer Ingelheim,Janssen,Novartis,Novartis,Pfizer,Roche,Roche,Sanofi-Aventis,Siemens Healthineers,Takeda和Amgen,Amgen,Dracen Pharmaceuticals,Janssen,Janssen,Janssen,Novartis,Pfizer和Takeda。 P.C. 报告了来自BMS,阿斯利康岛,诺华,诺华,BMS,Illumina,Illumina,Astrazeneca,Novarkeneca,Novastis,Thermo-Fisher,MSD,Roche,Roche和Chugai和BMS的咨询委员会的酬金。 S.B.G. 报告了阿斯利康,Boehringer Ingelheim,Bristol-Myers Squibb,Genentech,Amgen,Amgen,Blueprint Medicine,Sanofi Genzyme,Daiichi-Sankyo,Regeneron,Regeneron,Takeda和Janssen的报告咨询/顾问委员会成员;来自阿斯利康,Boehringer Ingelheim和Mirati的研究资金。 B.R. M.N. J.Z.M.S.报告了Amgen,Astrazeneca,Boehringer Ingelheim,Janssen,Novartis,Novartis,Pfizer,Roche,Roche,Sanofi-Aventis,Siemens Healthineers,Takeda和Amgen,Amgen,Dracen Pharmaceuticals,Janssen,Janssen,Janssen,Novartis,Pfizer和Takeda。P.C. 报告了来自BMS,阿斯利康岛,诺华,诺华,BMS,Illumina,Illumina,Astrazeneca,Novarkeneca,Novastis,Thermo-Fisher,MSD,Roche,Roche和Chugai和BMS的咨询委员会的酬金。 S.B.G. 报告了阿斯利康,Boehringer Ingelheim,Bristol-Myers Squibb,Genentech,Amgen,Amgen,Blueprint Medicine,Sanofi Genzyme,Daiichi-Sankyo,Regeneron,Regeneron,Takeda和Janssen的报告咨询/顾问委员会成员;来自阿斯利康,Boehringer Ingelheim和Mirati的研究资金。 B.R. M.N. J.Z.P.C.报告了来自BMS,阿斯利康岛,诺华,诺华,BMS,Illumina,Illumina,Astrazeneca,Novarkeneca,Novastis,Thermo-Fisher,MSD,Roche,Roche和Chugai和BMS的咨询委员会的酬金。S.B.G. 报告了阿斯利康,Boehringer Ingelheim,Bristol-Myers Squibb,Genentech,Amgen,Amgen,Blueprint Medicine,Sanofi Genzyme,Daiichi-Sankyo,Regeneron,Regeneron,Takeda和Janssen的报告咨询/顾问委员会成员;来自阿斯利康,Boehringer Ingelheim和Mirati的研究资金。 B.R. M.N. J.Z.S.B.G.报告了阿斯利康,Boehringer Ingelheim,Bristol-Myers Squibb,Genentech,Amgen,Amgen,Blueprint Medicine,Sanofi Genzyme,Daiichi-Sankyo,Regeneron,Regeneron,Takeda和Janssen的报告咨询/顾问委员会成员;来自阿斯利康,Boehringer Ingelheim和Mirati的研究资金。B.R. M.N. J.Z.B.R.M.N. J.Z.M.N.J.Z.J.Z.报告Regeneron的咨询/顾问委员会角色。L.L报告辉瑞,阿斯利康,罗氏,武田,BMS,MSD,MSD,Bayer,Lilly,Amgen和Sanofi的咨询/咨询角色。报告了阿斯利康Daiichi Sankyo的咨询/咨询角色;梅克克的研究资金。G.R.B。reports honoraria for scientific advisory boards from Bristol Myers Squibb, Bayer, Celgene, Clovis Oncology, AbbVie, ARIAD, Genentech, Novartis, Xcovery, Adicet, Amgen, AstraZeneca, Roche, MedImmune, Maverick Therapeutics, Johnson & Johnson, Virogin Biotech, Gilead Sciences, Daiichi Sankyo Inc,Novartis,Tyme,Janssen Oncology,Lilly,Innil;默克,Celgene,GenEntech,Xcovery,Novartis,Bristol Myers Squibb,GlaxoSmithKline,GlaxoSmithkline,Adaptimmune,Adaptimmune,Macogenics,Kite Pharma,Inmatics,Incyte,Incyte,Medimmune,Exelixis,Exelixis,Immunocore,Roche,Roche,Roche,Roche,Astrazeneca,bayerenity groutice groutsigence,bayeryca,bayerenity grounity consegentime的研究融资曲目免疫药物,Daiichi Sankyo Inc,Verastem。报告了约翰逊和约翰逊,诺华,布里斯托尔·迈尔斯·索尼,阿斯利康,吉普鲁斯,罗氏,创新和亨格鲁伊的咨询/咨询角色;默克公司的研究补助金。D.H.O. 报告了默克,BMS,Genentech,Pfizer,Palobiofarma,Onc.ai的机构研究资金。 C.M.B报告蓝图药物的咨询/咨询角色/酬金,Amgen,Oncocyte;来自阿斯利康,Genentech,Takeda,Spectrum,Mirati,Erasca,Novartis的研究赠款。 G.M报告Roche Hellas,Novartis,BMS,MSD,Astrazeneca,Takeda Hellas,Janssen,GSK,GSK,Amgen Hellas,Sanofi,Boehringer,Boehringer,Roche Hellas,Novartis,BMS,MSD,MSD,MSD,MSD,MSD,MSD,MSD,BOHRINGE,BOEHRINGE。 C.A.S。 M.C.G。 K.A.M. J.E.G.D.H.O.报告了默克,BMS,Genentech,Pfizer,Palobiofarma,Onc.ai的机构研究资金。C.M.B报告蓝图药物的咨询/咨询角色/酬金,Amgen,Oncocyte;来自阿斯利康,Genentech,Takeda,Spectrum,Mirati,Erasca,Novartis的研究赠款。G.M报告Roche Hellas,Novartis,BMS,MSD,Astrazeneca,Takeda Hellas,Janssen,GSK,GSK,Amgen Hellas,Sanofi,Boehringer,Boehringer,Roche Hellas,Novartis,BMS,MSD,MSD,MSD,MSD,MSD,MSD,MSD,BOHRINGE,BOEHRINGE。C.A.S。 M.C.G。 K.A.M. J.E.G.C.A.S。M.C.G。 K.A.M. J.E.G.M.C.G。K.A.M. J.E.G.K.A.M.J.E.G.J.E.G.报告了Arcus Biosciences,Astrazeneca,Genentech,Mirati Therapeutics,Janssen,Takeda的咨询/咨询角色。C.M.B报告了阿斯利康,BMS,CVS,Genentech,Jazz,JNJ,Novartis,Pfizer,Regeneron,Sanofi,Sanofi,Seattle Genetics,Takeda的咨询/咨询角色;默克的发言人局;来自BMS的阿斯利康的研究资金。reports consulting/advisory role/honoraria from: AstraZeneca, MSD International GmbH, BMS, Boehringer Ingelheim Italia S.p.A, Celgene, Eli Lilly, Ignyta, Incyte, Inivata, MedImmune, Novartis, Pfizer, Roche, Takeda, Seattle Genetics, Mirati, Daiichi Sankyo, Regeneron,Merck,Ose Immuno Therapeutics,Blueprint,Jansenn,Sanofi;来自MSD的Eli Lilly,Pfizer(MISP)的机构研究资金; Astrazeneca,MSD International GmbH,BMS,Boehringer Ingelheim Italia S.P.A,Celgene,Eli Lilly,Eli Lilly,Ignyta,Incyte,Incyte,Medimmune,Novartis,Novartis,Pfizer,Roche,Roche,Takeda,Takeda,Tiziana,Tiziana,Tiziana,Tiziana,Tiziana,Foundation Medicine,Glaxo Smith Klaxo Klaxo Kline Kline Gsk,Spectrum PharmaceAceSirs。报告咨询/咨询角色,来自:Amgen,Astrazeneca,BMS,Janssen,Regeneron;研究资金(向机构)发出:Astrazeneca,BMS,Mirati。报告咨询/咨询角色,来自三倍健康合作伙伴,芝士制药,赛诺菲制药,诺瓦蒂,诺瓦蒂,默克公司,洛克斯科企业,爵士乐,爵士药物,詹斯森药物,詹斯森科学事务,詹斯森科学事务,janssen Scientific,llc,inivata,inivata,inivata,inivata,serona,serono,serona,serona,emdke,seron, (DSI),Celgene Copr,Bristol-Myers Squibb,Blueprint药物,Axiom HC策略,Astrazeneca,Abbvie;辉瑞,诺华,默克公司的研究资金,路德维希癌症研究所,G1 Therapeutics,Genentech,Bristol-Myers Squibb,Boehringer Ingelheim和Astrazeneca。A.L.C。A.L.C。S.P. P报告咨询/咨询角色,来自:Amgen,Astrazeneca,Bristol-Myers Squibb,Certis,Eli Lilly,Eli Lilly,Jazz,Genentech,Illumina,Illumina,Merck,Pfizer,Pfizer,Rakuten,Rakuten,Tempus;从:Amgen,Astrazeneca/Medimmune,Bristol-Myers Squibb,Eli Lilly,Eli Lilly,Fate Therapeutics,Gilead,Iovance,IOVANCE,IOVANCE,IOVANCE,MERCK,PFIZE,ROCHE/ROCHE/GENENTECH,SQZ BIOTECHNOLOGIES。报告Tempus的咨询角色;来自Amgen,Astrazeneca,Genentech的研究资金。H.A.W. 报告了来自阿斯利康,蓝图,Mirati,Merck和Genentech/Roche的咨询/咨询委员会;来自ACEA生物科学,Arrys Therapeutics,Astrazeneca/Medimmune,BMS,Clovis肿瘤学,Genentech/Roche,Merck,Novartis,Seagen,Seagen,Xcovery,Helsinn的研究资金。H.A.W.报告了来自阿斯利康,蓝图,Mirati,Merck和Genentech/Roche的咨询/咨询委员会;来自ACEA生物科学,Arrys Therapeutics,Astrazeneca/Medimmune,BMS,Clovis肿瘤学,Genentech/Roche,Merck,Novartis,Seagen,Seagen,Xcovery,Helsinn的研究资金。
AI医疗保健应用程序利用算法,机器学习和数据分析来复制人类智能。通过快速分析大量数据并识别模式,AI可帮助医生做出更明智的决定。在美国,AI被应用于医学成像,预测分析,个性化医学和行政任务。这项技术正在改变医疗保健,但也带来了重大的挑战和风险。例如,AI可以分析医学图像,实验室结果和健康数据,以早日诊断疾病,并具有很高的放射学和肿瘤学精度。2023年,AI驱动的癌症筛查工具提高了近20%的乳腺癌检测率。AI迅速处理数据,使医生能够快速制定治疗计划,这在紧急情况下尤为重要。此外,AI通过考虑患者的遗传概况,生活方式和历史来实现个性化医学,从而实现更有效的治疗计划。通过自动执行管理任务,AI可以大大降低医疗保健成本。在美国,医疗保健费用是一个主要问题的美国,AI可以帮助医院更有效地运作并降低费用。较小的医院和诊所可能由于高前期成本和培训要求而难以采用AI技术,从而创造了不平等的医疗保健景观,只有资金充足的机构才能负担得起高级解决方案。一项2024年的调查发现,有60%的中小型美国诊所报告说,成本是AI采用的重大障碍。此限制突出了需要更经济实惠且可访问的AI基础架构。2。AI驱动的医疗保健对数据隐私和安全性提出了担忧,诸如HIPAA之类的法律要求严格的法规来保护患者信息。2023数据泄露突出了确保患者数据安全的挑战,尤其是在依靠大型数据集的复杂AI系统中。虽然AI非常准确,但它可能会犯错误,尤其是如果训练数据不完整或有偏见,导致误诊和治疗不当。在AI驱动的医疗保健中对人类监督的需求变得越来越明显。尽管AI的进步进步,但患者仍然重视人类的互动,尤其是在处理敏感健康问题时。一项2023年的调查发现,有70%的美国患者更喜欢与人为医疗保健提供者相比,而不是AI。在医疗保健中使用AI提出了道德问题,包括对错误的责任,公平访问治疗以及算法中的潜在偏见。为了提高对AI的信任,开发人员正在创建“可解释的AI”系统,这些系统可为决策过程提供明确的见解,从而使医生能够验证AI建议。科技公司和医院之间的合作旨在创建具有详细说明的透明AI系统,使医疗保健提供者更容易信任基于AI的诊断。保护患者数据对于当今的医疗保健领域至关重要。通过遵守严格的数据保护法和HIPAA指南,医疗保健提供者可以最大程度地降低隐私风险。例如,几个美国医疗保健组织已投资于可用的网络安全工具来保护患者信息。3。AI应被用作支持工具,而不是代替人类医疗保健专业人员。人类的监督至关重要,尤其是对于高风险诊断和治疗计划。许多美国医院雇用AI来协助医生,但在做出任何治疗决定之前,仍需要对人类医生进行最终审查。这种方法将AI的效率与人类医疗保健提供者的专业知识相结合,以进行更安全的患者护理。随着AI技术的发展,其在美国医疗保健系统中的作用将继续扩展。研究人员正在努力提高AI的准确性,可访问性和安全性。医疗保健提供者,科技公司和决策者之间的合作对于应对AI的挑战并最大程度地利用其收益至关重要。AI具有增强患者护理,提高效率和降低成本的巨大潜力。但是,它还引入了与成本,隐私和道德问题有关的挑战。通过仔细权衡这些利弊,美国医疗保健提供者可以负责任地实施AI,从而确保其益处达到尽可能多的患者,同时最大程度地减少风险。AI在医疗保健中的采用正在彻底改变医疗和患者经验。从更快的诊断到机器人辅助手术,AI通过执行通常由人类完成的任务来简化患者,医生和医院管理人员的生活,但在较少的时间和成本的一小部分。使用及时和定制的医疗治疗是AI对医疗保健部门产生重大影响的关键领域。Grail使用AI驱动的测试在早期阶段检测癌症。在各种应用中可以看到AI在医疗保健方面的潜力的例子。这样的应用是AI辅助诊断,它可以通过比人类专业人员更准确地预测和诊断疾病来帮助改善诊断过程。新药的开发是AI发挥关键作用的另一个领域。传统的药物开发方法涉及长期昂贵且耗时的研究过程。但是,凭借AI可以快速分析大量数据的能力,它可以帮助设计药物,预测潜在的副作用以及确定适合临床试验的候选者。AI还通过通过数字通信工具提供个性化的护理和支持来增强患者体验。这包括发送提醒,提供健康技巧以及为患者建议下一步。此外,AI有助于诊断的能力可以使患者访问更快,更准确,从而有助于更好的整体护理。除了这些应用程序外,AI还用于管理大量医疗保健数据,这可能是涉及大量信息的挑战。但是,AI处理大量数据集的能力使其成为连接可能不会引起注意的重要数据点的宝贵工具,从而加快了新药和治疗的发展。此外,医院越来越多地使用AI驱动的机器人,例如微创手术和心脏手术。几家公司通过将AI技术整合到他们的服务中,处于医疗创新的最前沿。这些机器人系统使外科医生能够以更高的精度和准确性进行复杂的手术,从而减少并发症和更快的恢复时间。Eliseai总部位于纽约,提供对话性AI解决方案,可以通过各种通信渠道(例如SMS,语音,电子邮件和Web聊天)来自动化管理任务,例如约会计划和发送付款提醒。在加利福尼亚州圣马特奥的Evidation的移动应用程序通过奖励和教育内容来帮助用户管理健康。用户还可以在AI的支持下参与生命科学公司,政府机构或学术机构的研究。该技术支持诸如向报告潜在临床试验报告流感系统的用户提醒的项目。总部位于波士顿的Cohere Health使用AI来简化患者的先前授权流程,以确保及时获得护理。他们的共同统一平台允许健康计划创建数据驱动的护理路径,减少压力和成本。纽约的Flatiron Health提供基于云的肿瘤软件,该软件在全国范围内连接癌症中心,以改善治疗方法,并使用先进技术(如人工智能)加速研究。该技术提供了数十亿癌症患者数据点的见解,从而增强了患者护理。伊利诺伊州埃文斯顿市的全球咨询公司ZS通过AI,销售,市场营销,分析和数字化转型专业知识来帮助企业挑战医疗保健挑战。他们利用医学技术和生命科学等行业的复杂AI工具。几家公司正在利用AI技术来改善医疗保健结果。Healthee的员工福利应用程序在纽约依靠AI来指导员工通过可用的覆盖范围和治疗选择。其虚拟助手Zoe为与福利相关的问题提供了个性化答案。Pfizer在纽约使用AI来研究各种疾病的新药候选者,包括COVID-19治疗(如Paxlovid)。使用模拟和建模具有高潜在有效性的科学家模型化合物。takeda开发治疗和疫苗,以解决腹腔疾病等疾病。武田采用AI用于罕见的自身免疫性疾病和登革热,使用它来开发新药物并优化现有治疗方法。Enlitic开发了深度学习的医学工具来简化放射学诊断,分析非结构化的医疗数据,以使医生更好地了解患者需求。巴比伦旨在通过专注于预防,为AI引擎提供交互式症状检查器,提供知情和最新的医疗信息,以重新设计医疗保健。蝴蝶网络设计AI驱动的探针,用于在各种情况下进行超声检查,为麻醉,初级保健,急诊医学和其他领域创建3D可视化。CloudMedx使用机器学习来通过预测分析来改善患者旅行,管理患者数据,临床病史和付款信息,从而生成洞察力。BioFourmis将患者和卫生专业人员与基于云的平台联系起来,集成移动设备和可穿戴设备,以收集AI驱动的见解并进行虚拟访问。公司的平台通过从过去的记录中找到重要的患者详细信息来节省时间。标题Health结合了AI和超声技术,用于早期疾病识别,并实时指导提供者进行超声波处理。Corti的平台利用AI来改善紧急医疗服务操作,总结紧急电话,加快文件并跟踪员工绩效。基于旧金山的Atomwise正在使用AI通过以前所未有的量表分析遗传化合物来对抗埃博拉病毒和多发性硬化症。南旧金山的Freenome通过筛查,测试和血液检查利用AI进行癌症检测。 犹他州的递归通过其OS加速了药物发现,从而生成和分析了大型生物学和化学数据集。 Intitro在旧金山将生成的AI应用于人类疾病生物学,生成细胞数据和临床见解,以刺激新的医学开发。 Owkin在纽约采用AI来通过识别靶标,建议组合和建议重新分配治疗来增强癌症治疗。 多伦多的深基因组学利用其AI平台来寻找神经肌肉和神经退行性疾病药物的候选者。 IBM的Armonk的Watson帮助医疗保健专业人员通过个性化的健康计划和基因测试解释来优化医院效率,与患者互动并改善治疗。 在休斯敦提供的Informai提供了AI产品,包括用于放射治疗计划的Radoncai和用于供体 - 接收数据评估的移植。 Komodo Health已开发了一个称为“医疗保健图”的现实世界患者数据的全面数据库,该数据利用AI来提取相关信息。南旧金山的Freenome通过筛查,测试和血液检查利用AI进行癌症检测。犹他州的递归通过其OS加速了药物发现,从而生成和分析了大型生物学和化学数据集。Intitro在旧金山将生成的AI应用于人类疾病生物学,生成细胞数据和临床见解,以刺激新的医学开发。Owkin在纽约采用AI来通过识别靶标,建议组合和建议重新分配治疗来增强癌症治疗。多伦多的深基因组学利用其AI平台来寻找神经肌肉和神经退行性疾病药物的候选者。IBM的Armonk的Watson帮助医疗保健专业人员通过个性化的健康计划和基因测试解释来优化医院效率,与患者互动并改善治疗。 在休斯敦提供的Informai提供了AI产品,包括用于放射治疗计划的Radoncai和用于供体 - 接收数据评估的移植。 Komodo Health已开发了一个称为“医疗保健图”的现实世界患者数据的全面数据库,该数据利用AI来提取相关信息。IBM的Armonk的Watson帮助医疗保健专业人员通过个性化的健康计划和基因测试解释来优化医院效率,与患者互动并改善治疗。在休斯敦提供的Informai提供了AI产品,包括用于放射治疗计划的Radoncai和用于供体 - 接收数据评估的移植。Komodo Health已开发了一个称为“医疗保健图”的现实世界患者数据的全面数据库,该数据利用AI来提取相关信息。这使医疗保健专业人员能够创建更详细的患者资料,同时还要考虑社会不平等。Oncora医学通过其平台协助肿瘤学家参与癌症研究和预防,该平台可自动化记录并确定高危人群进行临床试验。AICURE可以帮助医疗团队在使用AI和计算机视觉的临床试验期间跟踪患者对药物治疗方案的遵守。公司的移动应用程序提供了对患者行为的实时见解,使临床团队在必要时可以进行干预。Pathai利用机器学习技术来帮助病理学家进行准确的诊断,目的是减少癌症诊断和开发个性化治疗方法的错误。在100,000个DNA区域内的癌症信号的Galleri测试筛选,可以预测与癌症相关的组织或器官。Linus Health通过其专有评估技术DCTClock致力于对大脑健康进行现代化,该技术将传统的笔和纸时钟绘图测试数字化,以分析100个指标的认知功能。viz.ai帮助护理团队使用AI驱动的解决方案对医疗紧急情况的反应更快。RITH RETION位于洛杉矶,已开发出一种自动化系统,该系统综合了电子病历数据以诊断患者并提供个性化的护理建议。同时,由哈佛医学院团队创立的浮标健康提供了AI驱动的症状检查器,可指导患者进行正确的治疗。在波士顿,贝丝以色列女执事医疗中心正在使用AI-Hehanced显微镜快速扫描血液样本中的致命细菌。迭代健康适用于胃肠病学,使患者招募进行临床试验自动化,并帮助医生识别癌性息肉。virtusense使用AI传感器来跟踪患者运动并预测潜在的下降,而克莱利的数字护理平台分析了心血管健康,并建议个性化的治疗计划。Novo Nordisk还与Valo Health合作,使用AI驱动的计算平台和人体组织建模技术开发新的心脏代谢疾病治疗。这些创新的解决方案旨在通过更快的诊断,治疗和护理决定来挽救生命。Bioxcel Therapeutics利用AI发现和开发免疫肿瘤和神经科学中的创新药物。该公司的药物重新创新计划利用AI来发现现有药物的新应用或确定合适的患者。与2型糖尿病(例如2型糖尿病)抗击的创新方法涉及将物联网技术,AI,数据科学,医学,医学和医疗保健专业知识相结合。这种融合可以创建人类代谢功能的数字表示,称为全身数字双胞胎,该功能结合了成千上万的健康数据点,日常活动和个人喜好。在加利福尼亚州的山景中,Qventus利用AI来应对医院的运营挑战,包括急诊室和患者安全。他们的自动化平台优先考虑患者疾病和伤害,同时跟踪医院的等待时间以优化护理服务。微妙的医疗利用AI来提高放射学部门的图像质量。同时,克利夫兰诊所与IBM合作开发了Discovery Accelerator,该计划将AI与医学研究合并。这种伙伴关系旨在通过开发针对基因组学,化学和药物发现以及人群健康分析的基础设施来加快医疗保健突破。在马里兰州巴尔的摩,约翰·霍普金斯医院(Johns Hopkins Hospital)与GE Healthcare合作,使用预测性AI技术来增强患者护理。他们的工作队有效地增加了医院活动的优先级,导致患者在急诊室的分配速度快38%。一滴提供了一种谨慎的解决方案,用于通过其一个Drop Premium应用程序来管理糖尿病和高血压以及体重管理等慢性病。这个交互式平台提供了现实世界中专业人士的教练,由AI提供动力的预测性葡萄糖读数,学习资源以及对从各种设备的读取的日常跟踪。他们的Sirtlepet和微微妙产品可以增强MRI和PET扫描,同时减少图像噪声,从而每天扫描更多患者,从而缩小等待时间。twill被描述为“智能治疗公司”,为企业,制药公司和健康计划提供了数字医疗保健产品以及合作伙伴,以开发用于管理多发性硬化症和牛皮癣等医疗状况的个性化护理轨道。这些个性化计划可以包括数字治疗,护理社区和教练选择。Augmedix为医院,卫生系统,个人医生和小组实践提供了一套支持AI的医疗文档工具。他们的产品利用自然语言处理和自动语音识别来节省用户时间并提高效率。医疗保健中的云计算:利用AI来提高患者满意度云计算正在通过利用人工智能(AI)来改善医疗保健,以提高患者满意度,简化临床工作流程和推动创新。####基于云的AI应用程序的示例:1。** Greenlight Guru **:使用机器学习来检测网络设备中的安全风险,提供自动计算的风险评估和行业数据聚合。** tempus **:将AI应用于大量的临床和分子数据集,以个性化医疗保健治疗,为医生提供有关放射学,心脏病学和神经病学的见解。**封闭环境**:使用AI端到端的平台,使用AI来发现高危患者,建议治疗方案并收集循环反馈以进行外展和参与策略。####新兴技术: - ** Beacon Biosignals **:开发EEG分析平台利用机器学习算法来提高药物开发成功率。- ** Proscia **:利用具有AI驱动图像分析的数字病理软件来检测癌细胞中的模式,简化数据管理并支持癌症发现和治疗。- ** H2O.AI **:分析医疗保健数据以挖掘,自动化和预测过程,包括ICU转移,临床工作流程和医院获得的感染。- ** akasa **:自动为医疗保健提供者进行管理任务,使员工能够专注于高优先级领域,同时保持索赔管理的准确性。- **替代性外科手术**:将虚拟现实与AI -Sable Abled机器人结合起来,用于微创手术,使外科医生能够详细探索患者的身体。####关键好处: - 通过个性化护理提高患者满意度 - 增强的临床工作流程和效率 - 提高了医疗保健提供者的生产力 - 增强的决策能力 - 简化的行政任务这些云计算和AI的最先进应用程序为医疗保健领域彻底改变了健康,有效,有效,患者和患者,并彻底改变了医疗保健领域。医疗保健中的区块链:17个示例了解精确的网络刀系统利用AI和机器人技术来精确治疗癌性肿瘤。该技术使提供者能够为每个患者的立体定向放射外科手术和立体定向的身体放射治疗。机器人的实时肿瘤跟踪功能使医生和外科医生可以针对受影响的地区而不是整个身体。在加利福尼亚州的桑尼维尔(Sunnyvale),直觉的DA Vinci平台具有相机,机器人臂和手术工具,可帮助您进行最小的侵入性程序。这些平台不断获取信息,并向外科医生提供分析以改善未来的程序。da vinci已协助超过1000万个运营。卡内基·梅隆大学(Carnegie Mellon University)的机器人学院开发了Heartlander,这是一种旨在促进心脏治疗的微型移动机器人。在医师的控制下,这个微小的机器人通过一个小切口进入胸部,单独导航到心脏的特定位置,遵守心脏表面,并进行治疗。在荷兰的埃因霍温(Eindhoven)中,Microsure的机器人帮助外科医生克服了人类的身体局限性。公司的运动稳定器系统旨在提高手术过程中的性能和精度。可以通过操纵杆来控制其Musa手术机器人的手术机器人。Laudio旨在帮助一线经理建立高性能的团队。该公司的技术利用AI驱动的建议来推动有针对性的管理措施,以帮助简化前线医疗工作者的工作流程。Laudio的目标是提高效率,员工参与度和患者经验。最终的医疗保健提供医疗保健情报软件,将第三方数据,二级和专有研究转换为可行的见解。它旨在提供有组织,可搜索和用户友好的平台。该公司帮助医疗保健空间中的企业将其产品推向目标受众。形成生物是一家使用AI开发新药物的制药公司。公司在整个开发,制造和营销中都利用AI。其目标是加速药物开发管道并更有效地为患者获取新产品。努力健康旨在通过服务和技术来改造肾脏疾病护理,从而优先考虑早期识别和有助于降低总体成本的反应。它为客户提供了使用预测性和比较数据来设计家庭优先透析选项和综合护理计划的本地提供商。IMO健康利用AI来通过保持准确的手术词典并将文档与监管要求保持一致来提高临床数据质量。其解决方案适合各种组织,包括健康计划,提供者和研究计划。Artera的患者沟通平台利用AI模型和基础设施来促进患者访问,减少员工的响应时间并提高员工与患者比率。公司的生成AI和分类模型通过将高优先级消息移至顶部来确定收件箱管理。Arcadia的数据平台使医疗保健提供者能够通过统一来自各种来源的数据的见解来简化操作并积极护理。其生成的AI助理提供了跨财务风险,合规性和护理管理等领域的背景和建议。AI在医疗保健中结合了机器学习,自然语言处理,深度学习和其他技术,以增强卫生专业人员的能力,患者经验和疾病检测。像Eliseai,Cohere Health,Pfizer,Butterfly Network和Novo Nordisk这样的公司都利用AI用于自动化,数据分析和治疗计划。AI的好处包括运营效率,个性化治疗计划和快速数据处理,可以加速医疗诊断。但是,AI系统并不可靠,可能会产生错误或有偏见的结果,从而引起人们对可信度和数据隐私的担忧。