试图显示具有更长范围相互作用的量子ISING模型的共形歧管上的拓扑转变。该模型哈密顿系统具有不同的间隙相位,具有不同的拓扑指数,并且根据横向场的存在和不存在,也具有不同的量子临界线。我们还提供了参数空间不同机制的中心电荷。在存在和不存在横向场的情况下,以及C的非宇宙特征,我们明确显示了关键,拓扑和中央电荷(C)的相互作用。我们显示了在存在横向场的情况下,在存在横向场的情况下,LIFSHITZ过渡是如何发生的。我们明确地表明了保形场理论(CFT)临界性和非CFT临界性的存在。我们提出了一个明确的计算,以找到多项式函数与Anderson-Pseudo自旋模型Hamiltonian之间的关系。我们的结果比非互动的许多人体系统的存在结果更丰富。这项工作不仅提供了保形场理论拓扑状态的新观点,而且还提供了低维量子系统的许多身体系统。
[1] R. J. Elliot,L。Aggoun和J.B. Moore。 隐藏的马尔可夫模型:估计和控制。 Springer Science+商业媒体,1995年。 [2] O. Capp´e,E。Moulines和T. Ryd´en。 在隐藏的马尔可夫模型中推断。 Springer Science+商业媒体,2005年。 [3] L. R. Rabiner。 关于隐藏的马尔可夫模型和语音识别中选定应用的教程。 (在语音识别中的读数中)。 Morgan Kaufmann Publishers,Inc,1990。 [4] R. Durbin,S。Eddy,A。Krogh和G. Mitchison。 生物序列分析。 剑桥大学出版社,1998年。 [5] S. Z,li。 图像分析中的马尔可夫随机字段建模。 Springer Publishing Company,2009年。 [6] A. Zare,M。Jovanovic和T. Georgiou。 湍流的颜色。 流体力学杂志,812:630–680,2017。 [7] B. Jeuris和R. Vandebril。 带有toeplitz结构块的块toeplitz矩阵的khler平均值。 SIAM关于矩阵分析和应用的杂志,37:1151–1175,2016。 [8] A. Barachant,S。Bonnet,M。Congedo和C. Jutten。 通过Riemannian几何形状进行多类脑部计算机界面分类。 IEEE生物培训工程交易,59:920–928,2012。 [9] O. Tuzel,F。Porikli和P. Meer。 通过分类的人行人进行探测。 IEEE关于模式分析和机器智能的交易,30:1713–1727,2008。 [10] S. Said,H。Hajri,L。Bombrun和B. C. Ve-Muri。 熵,2016年18月18日。B. Moore。隐藏的马尔可夫模型:估计和控制。Springer Science+商业媒体,1995年。[2] O. Capp´e,E。Moulines和T. Ryd´en。在隐藏的马尔可夫模型中推断。Springer Science+商业媒体,2005年。[3] L. R. Rabiner。关于隐藏的马尔可夫模型和语音识别中选定应用的教程。(在语音识别中的读数中)。Morgan Kaufmann Publishers,Inc,1990。[4] R. Durbin,S。Eddy,A。Krogh和G. Mitchison。生物序列分析。剑桥大学出版社,1998年。[5] S. Z,li。图像分析中的马尔可夫随机字段建模。Springer Publishing Company,2009年。[6] A. Zare,M。Jovanovic和T. Georgiou。湍流的颜色。流体力学杂志,812:630–680,2017。[7] B. Jeuris和R. Vandebril。带有toeplitz结构块的块toeplitz矩阵的khler平均值。SIAM关于矩阵分析和应用的杂志,37:1151–1175,2016。[8] A. Barachant,S。Bonnet,M。Congedo和C. Jutten。通过Riemannian几何形状进行多类脑部计算机界面分类。IEEE生物培训工程交易,59:920–928,2012。[9] O. Tuzel,F。Porikli和P. Meer。通过分类的人行人进行探测。IEEE关于模式分析和机器智能的交易,30:1713–1727,2008。[10] S. Said,H。Hajri,L。Bombrun和B. C. Ve-Muri。熵,2016年18月18日。Riemannian对称空间上的高斯分布:结构化协方差矩阵的统计学习。信息理论交易,64:752–772,2018。[11] E. Chevallier,T。Hose,F。Barbaresco和J. Angulo。对Siegel空间的内核密度估计,并应用于雷达处理。[12] A. Banerjee,I。Dhillon,J。Ghosh和S. Sra。使用Von Mises-Fisher分布在单位过度上进行促进。机器学习研究杂志,6:1345–1382,2005。
摘要 - 目的:riemannian几何形状用于脑部计算机界面(BCIS)已在纪念百年中获得了动力。针对Riemannian BCIS提出的大多数机器学习技术都会考虑一个人的数据分布是单峰的。但是,由于高数据可变性是脑电图(EEG)的关键限制,因此该分布可能是多模式的,而不是单峰。在本文中,我们提出了一种新型的数据建模方法,用于考虑在EEG协方差矩阵的Riemannian歧管上考虑复杂的数据分布,旨在提高BCI可靠性。方法:我们的方法,riemannian光谱聚类(RISC),代表使用基于地质距离提出的模拟测量的图形上的eeg协方差矩阵分布,然后通过光谱群集将图形节点组成。这允许在歧管上建模单峰和多模式分布。RISC可以用作设计名为Outier检测的离群检测器Riemannian光谱聚类(ODEN-RISC)和名为多模式的多模式分类器Riemannian Spectral spectral clustering(MCRISC)的基础。以数据驱动方式选择Odenrisc/Mcrisc的所有必需参数。越过,无需预先设置离群检测的阈值和多模式分类的模式的数量。结果:实验评估表明,与现有方法相比,Odenrisc可以更准确地检测EEG异常值,而Mcrisc进行了标准的单峰分类器,尤其是在高变异性数据集上。结论:预计Odenrisc/Mcrisc将有助于使现实生活中的BCI在实验室外和神经学应用程序外应用更强大。明显:RISC可以用作强大的EEG Outier检测器和多模式分类器。
摘要:单细胞转录组学越来越依赖于非线性模型来利用尺寸和不断增长的数据。但是,大多数模型验证都侧重于局部流动保真度(例如,平方误差和其他数据可能性指标),在对全球流形拓扑的关注很少,理想情况下应该是学习。为了解决这一问题,我们已经实施了一条强大的评分管道,旨在验证模型重现整个参考歧管的能力。Python库Cyto-Bench演示了这种方法,以及Jupyter笔记本电脑和示例数据集,以帮助用户开始工作流程。歧管概括分析可用于开发和评估模型,以了解完整的蜂窝动力网络,并在外部数据集中验证其性能。可用性:实施评分管道的Python库已通过PIP提供,可以在Github和一些Jupyter笔记本旁边检查显示其应用程序。联系人:nlazzaro@fbk.eu或toma.tebaldi@unitn.it
摘要:单细胞转录组学越来越依赖于非线性模型来利用维度和增长的数据。,大多数模型验证都侧重于局部流形的保真度(例如,平方误差和其他数据可能性指标),几乎不关注这些模型的全局歧管拓扑,理想情况下应该是学习。为了解决这一限制,我们实施了一个强大的评分管道,旨在验证模型重现整个参考歧管的能力。Python库Cytobench以及Jupyter笔记本电脑和示例数据集演示了这种方法,以帮助用户开始工作流。歧管概括分析可用于开发和评估旨在学习蜂窝动力学网络的模型,并在外部数据集上验证其性能。可用性:实施评分管道的Python库已通过PIP提供,可以在Github和一些Jupyter笔记本旁边检查显示其应用程序。联系人:nlazzaro@fbk.eu补充信息:补充数据可在Online Bioinformatics获得。
在人工智能社区中,在使用深度学习技术编码序列数据中取得了显着的进步。从未有过,如何有效地从通道维度挖掘有用的信息仍然是一个主要的挑战,因为这些特征具有子序列结构。线性子空间是格拉曼尼亚歧管的基本元素,已被证明是统计代表中的效率流形特征描述符。此外,欧几里得的自我关注机制在捕获数据的长期关系方面已显示出巨大的成功。受这些事实的启发,我们将自我注意力的机械主义扩展到了格拉斯曼尼亚的歧管。我们的框架可以有效地表征格拉曼尼亚歧管中编码的顺序数据的空间波动。在三个基准测试数据集(无人机识别数据集和两个EEG信号分类数据集)上进行了广泛的实验结果,证明了我们方法的优越性,而不是最先进的。可以在https://github.com/chenhu-ml/gdlnet上找到这项工作的代码和支持材料。
产品设置EZ-VAC TM真空歧管仅用于Zymo研究产品。与其他产品/化学物质一起使用可能会导致人身伤害或财产损失。请参阅套件的说明手册,以获取有关兼容性和处理真空歧管的更多信息。1。从包装中删除EZ-VAC真空TM歧管,单向Luer-Lock Stopcocks和Neoderene Spotper,并检查是否损坏。如果出现任何裂缝,请勿使用。2。将氯丁橡胶塞子插入位于EZ-VAC TM真空歧管1端的孔中。3。将单向Luer-Lock Stopcock牢固地连接到位于EZ-VAC™真空歧管顶部的所有20个歧管连接器上,通过将秒钟的衣领拧到歧管连接器2上。将每个手柄转到水平位置,关闭所有止损。4。将真空软管连接到位于EZ-VAC™真空歧管3端的黑色软管连接器。5。将真空软管连接到真空源4。您的EZ-VAC™真空歧管现在可以使用。