抽象目标。诸如Cherenkov发射(Cherenkov发射)的有效用法对于下一代,具有成本效益和超高敏感性的效果时间的启发时间引起了极大的兴趣。使用自定义,高功率消耗,读出电子设备和快速数字化,已经显示了与宠物大小的BGO晶体低于300 PS FWHM的前景。但是,这些结果无法扩展到由数千个检测器元素组成的完整系统。方法。为了铺平通往全型TOF-PET扫描仪的道路,我们使用Cherenkov发射闪光灯(BGO)研究了及时的ASIC的性能,以及基于FBK的金属沟通的最新SIPM探测器的开发之一。castic是一个高度可辨认的ASIC,具有8个输入通道,12 MW CH -1的功耗和能量测量的极好线性。为了将FASTIC的定时性能置于透视上,进行了比较测量与高功率消耗读数电子设备的比较测量值。主要结果。,对于2×2×3 mm 3和490 ps的最佳CTR FWHM,对于2×2×20 mm 3的Bgo晶体,及其可及时的2×2×3 mm和490 ps。此外,使用20毫米长LSO:CE:CA晶体,已经用castic测量了129 ps fwhm的CTR值,仅与离散HF电子设备获得的95 ps的最新ps略差。明显的能力。在第一次,已经评估了具有可伸缩性ASIC的BGO的定时能力。发现强调了宇宙ASIC在具有出色时机特征的成本效益TOF-PET扫描仪的发展中的潜力。
衰老会导致人类大脑微血管发生广泛的结构变化,这对毛细血管床灌注和氧气运输有显著的影响。目前文献中的大脑毛细血管网络模型侧重于健康的成年人大脑,并没有捕捉到衰老的影响,而这在研究神经退行性疾病时至关重要。这项研究建立在基于离体形态数据的人类大脑微血管统计精确模型之上。该模型根据对三个不同年龄段(青年、中年和老年)小鼠的体内测量结果,改编为“健康”衰老模型。从这个新模型中,可以计算出血液和分子交换参数,例如渗透性和表面积与体积的比值,并在三个年龄组之间进行比较。通过逐个改变模型血管的能力,可以创建连续的衰老梯度。研究发现,从中年到老年,表面积与体积比降低了 6%,通透性降低了 24%,并且网络内的可变性也随着年龄的增长而增加。衰老梯度表明衰老过程的阈值在 75 岁左右,此后微小的变化对血流特性的影响都会被放大。该梯度使得能够在离散时间点比较测量大脑特性的研究。中年和老年毛细血管床对微栓子的反应表明老年毛细血管床对血管闭塞的稳健性较低。随着大脑老化,微血管的脆弱性会增加——有一个“临界点”,超过此临界点,微血管的进一步重塑会对大脑产生过度的影响。在开发大脑的计算机模型时,年龄是一个非常重要的考虑因素,以便准确评估认知能力下降的风险因素并分离微血管健康的早期生物标志物。