图4。a)应用于SEM横截面的深度学习分割结果,显示:活性材料(灰色),毛孔(白色)和CBD(黑色)以及电流收集器(绿色)。c)EDX地图显示氟的分布。c)从a中深度学习分割的特写图像,这对应于图3c产生的高分辨率分割。
具有旋风效应的流体流量,输入与元素相切的过滤器壳体,而不是直接靠在元素上。因此,油包裹元素表面,并以向下的螺旋流动模式分布在滤波器介质表面上。此专利待处理功能可确保向外携带重污染颗粒,并远离过滤元件,从而预见毛孔的过早阻塞。这些较重的颗粒将在过滤碗的内部和底部积聚,具体取决于实际的流体流量条件,增加污垢的保持能力,并将元素替代之间的时间延长7-10%。
摘要 - 在开发有希望的ULIS缩放技术的发展中,一个关键作用之一是由多孔介电特性扮演的,具有低介电常数,用于分离金属化系统中的互连。在此类膜的毛孔中的气态产物的凝结使得可以解决阻止这种膜整合的最重要的问题,以进行低破坏性的等离子体蚀刻。然而,研究孔隙率的方法也基于膜孔中凝结过程中的吸附等温线的研究。因此,毛孔吸附的研究是创建具有低介电常数的电介质的最重要的实际问题之一,并且研究了其结构化的低伤害方法。椭圆测量法的方法是一种易于实现和准确的方法,用于获得吸附等温线。但是,其对孔径分布的进一步分析和确定缩小为解决积分方程,这是一个错误的问题。在本文中,我们建议采用Tikhonov的统治方法来解决它。该方法在模型数据上进行了验证,并用于研究最初厚度为202 nm的低K介电样品,基于有机硅酸盐玻璃的介电常数为2.3。
在使用Tethers帮助将DNA端子运输到毛孔的情况下,创建了奴才库,因此无法创建库后的尺寸选择(由于电泳是由于电泳而去除的)。因此,在创建库之前必须执行尺寸选择。另一方面,在创建库或多次执行的AMPURE XP纯化的干燥步骤时,DNA在移液器期间略有碎片,因此,即使执行了尺寸选择,也会在序列数据中读取短DNA,但是如果未执行尺寸选择,则较短读取的比例也会增加。客户评论
地下沿海沉积物中的微生物群落高度多样,并且在营养循环中起着重要作用。,虽然沙质沉积物中的微生物的主要部分呈足为Epipsammon(附着在沙粒上),但只有一小部分在间质毛孔中繁殖。到目前为止,对这些自由生活微生物群落的组成知之甚少。在这项研究中进行了研究,在沙滩的地下中,我们比较了沉积物中的古细菌和细菌群落结构,以及应用16S rRNA基因测序的相应毛孔水。我们发现,根据孔隙空间的不同,自由生活原核生物的比例仅为0.2-2.3%。间质微生物群落显示出一个小的重叠,附着的分数为4-7%,并且包含在孔道中仅发现的75-81%ASV的独特组成。它们比各自的沉积物级分更多样化,并且显示出更高的古细菌比。古细菌主要隶属于Dpann Superphylum的纳米章,相对丰富的间隙群落相对丰富。细菌分数包括与候选门辐射(CPR)有关的几种物种。已知两种原核生物谱系都有小细胞尺寸,包括尚未尚未识别的代谢功能的尚未培养的物种。我们的发现得到了对相邻潮汐平坦的调查,显示出类似的趋势。因此,我们的结果表明在沿海沉积物的地下存在不同的间质微生物群落。这种尚未培养的纳米章的自然富集和心肺复苏群的成员为靶向元基因组分析甚至隔离这些群体成员提供了进一步代谢表征的机会。
Thambidurai,Cuong Dang和Dhayalan Velauthapillai。从罗望子果壳中制备3D生物活化的毛孔纳米片的一种方法,印度专利参考。编号:202241008151DT。16.02.2022,出版日期:04/03/2022。授予申请,专利编号424526。8。Yuvakkumar,R.,Ravi,G.,Isacfranklin,M.,Hong,S.I。和Dhayalan Velauthapillai。 aYuvakkumar,R.,Ravi,G.,Isacfranklin,M.,Hong,S.I。和Dhayalan Velauthapillai。a
当砂岩储层进入超高的水阶段时,石油相会从连续变为不连续,这导致了储层的进一步发展和利用。重要的是要阐明不连续的油相的流量法和分布状态,以指导其余的石油产量。这项研究从砂岩储层中选择了样品,从数字核心准确获得了油和水相信息,并基于三维CT扫描构建了基质,以研究不连续的油相分布定律。我们使用数字核心来构建孔网络模型并计算毛孔半径,喉咙半径,毛孔 - 刺比,协调数和曲折度来研究孔结构对不连续油相的影响的影响。设计了一个由模拟储层的两个阶段组成的微位移实验,并设计了开发。为提高实验的准确性,控制了相关压力以在模拟的储层地层阶段形成结合的水。在模拟的储层开发阶段,在不同位移阶段对核心进行原位扫描,以在同一位置的不同阶段获得油和水分布。计算了油液滴,3D形状因子,欧拉数和饱和系数的数量,并定量分析了微虫的油团。根据形态和分布特征,将不连续相的其余油分为喉咙,薄膜,液滴,滴,岛和角的类型。结果表明,具有较小的孔隙率比,较大的配位数和较小的曲折的样品更有可能形成主要的通道。此外,剩余的石油更集中在该状态。在不连续相的其余油中,液滴的数量是最大的,并且具有明显的位移效应。岛的数量很小,因为所选样品具有良好的连通性,并且很难在单个孔中形成大型油滴。在超高的水上阶段,喉咙数量缓慢增加,这与主要通道的形成有关。拐角和电影很难置换。因此,他们的数量稳定增加。不连续的油相的定量表征有助于进一步研究毛孔量表的剩余油。
关于饲料生产的简短讲座几乎所有鱼饲料都是使用挤出机产生的。挤出意味着饲料混合物经历了煮熟,揉捏和通过模具扩展的过程。然后将其干燥为具有膨胀和多孔形式的颗粒。该过程类似于您在早餐碗中可能拥有的膨化谷物。对于鱼饲料,重要的是要有许多小毛孔,以便可以在真空座器中用油填充,以使饲料变得更加营养。Samuelsen解释:
鉴于对Heshui地区低渗透性砂岩储层的特征和控制因子的不可或缺的理解,本研究检查了Chang 2储层的显微镜矿物质和孔结构。它使用一系列方法(包括成像和间接方法)分析了其主要的控制因子。te结果表明,研究区域中张2储层的岩石以岩性的Arkose和Feldspathic碎屑石英砂岩为主。te储层空间会形成毛孔内孔,长石溶解的孔,岩石溶解的孔和晶间孔。有时会发现微裂纹。平均孔隙率为10.5%,平均渗透率为2.2 MD,具有低孔隙率 - 脱透透明度储层。在储层开发过程中,由构造效应产生的小鼻子形成的陷阱为良好的储层空间提供了机会。沉积和成岩过程在一定程度上控制了储层孔隙度的发展程度和方向。多段毛细管压力曲线和较长的缺失区域对应于相对较好的毛孔 - 螺旋式结构。伊利特是决定储层质量的主要成岩粘土矿物。三个效应都为储层的整体发展做出了贡献。
昨天的愿景,今天已经成为现实:旭格的 Energy 3 建筑 – 舒适性和创新能源管理的总和。一个利用建筑物的每个毛孔获取能量的系统。因为它不仅可以节省能源,而且通过外墙集成薄膜光伏发电产生的能量超过了建筑所需的能量。但同时它们通过智能能源管理器联网。控制、存储和使用所产生的直流电。适用于自动化、通风或冷却等建筑功能直至 LED 照明或电动汽车。