摘要。气体监测是理解地下环境中天然气的交换,扩散和迁移过程的先决条件,这与多种应用有关,例如CO 2的地质隔离。在这项研究中,将三种不同的技术(微型GC,红外和拉曼光谱镜)部署在一个实验性的钻孔上,以进行CO 2注射后的监测目的。的目的是开发一种实时化学监测装置,通过在井眼内的水中测量溶解的气体浓度,但也通过与井孔水平的平衡中的气体收集系统在表面上进行测量。但是,必须校准所有三种技术以提供最准确的定量数据。为此,实现了实验室中的第一个校准步骤。需要进行新的校准,以确定水中或气体收集系统中的气体浓度和/或浓度。用于气相分析,微型-GC,FTIR光谱和拉曼光谱法。对于CO 2,CH 4和N 2进行了Mi-CRO-GC的新校准,不确定性从±100 ppm到1.5 mol%,具体取决于散装浓度和气体类型。先前对CO 2和CO 2,N 2,O 2,CH 4和H 2 O校准了FTIR和RAMAN光谱仪,其精度为1 - 6%,具体取决于浓度尺度,气体和光谱仪。溶解的CO 2。预测溶解的CO 2浓度的不确定性分别为±0.003 mol kg 1和±0.05 bar。
•迅速增加气体发电的作用是整合可再生资源所需的能源和A/S•天然气价格驱动电力价格•天然气的“边际消费者”是天然气的“边际消费者”,天然气发电驱动天然气的价格驱动天然气的价格•天然气和电网之间缺乏共同价格的价格,并且可以在天然电网上产生自然电气的价格( 2014年的极地涡流)•天然气和电动运营协调的根本改进是现代电力和天然气输送系统的进步•LANL团队开发的管道模拟和优化方法的最新进步创造了一个机会,创造了一个实现此类激进改进的机会2014年的极地涡流)•天然气和电动运营协调的根本改进是现代电力和天然气输送系统的进步•LANL团队开发的管道模拟和优化方法的最新进步创造了一个机会,创造了一个实现此类激进改进的机会
1 LATMOS,国家科学研究中心 (CNRS)、凡尔赛圣康坦伊夫林大学 (UVSQ)、巴黎萨克雷大学、索邦大学 (SU),11 Boulevard d'Alembert,78280 Guyancourt,法国; cannelle.clavier@latmos.ipsl.fr(抄送); alain.sarkissian@latmos.ipsl.fr(AS); alain.hauchecorne@latmos.ipsl.fr(AH); slimane.bekki@latmos.ipsl.fr (SB); franck.lefevre@latmos.ipsl.fr(佛罗里达州); patrick.galopeau@latmos.ipsl.fr(PG); pierre-richard.dahoo@latmos.ipsl.fr (P.-RD); andrea.pazmino@latmos.ipsl.fr(美联社) andre-jean.vieau@latmos.ipsl.fr(A.-JV); christophe.dufour@latmos.ipsl.fr (光盘); pierre.maso@uvsq.fr(下午); nicolas.caignard@latmos.ipsl.fr (北卡罗来纳州); frederic.ferreira@latmos.ipsl.fr(FF); pierre.gilbert@latmos.ipsl.fr(PG); catherine.billard@uvsq.fr(CB); philippe.keckhut@latmos.ipsl.fr (PK)2 ACRI-ST—CERGA,10 Avenue Nicolas Copernic,06130 Grasse,法国; oha@acri-st.fr(OHFd); sandrine.mathieu@acri-st.fr (SM); antoine.mangin@acri-st.fr (AM) * 通信地址:Mustapha.Meftah@latmos.ipsl.fr;电话:+33-1-8028-5179 † 这些作者对这项工作做出了同等贡献。
摘要:低功耗气体传感器对于各种应用至关重要,包括环境监控和便携式物联网(IoT)系统。但是,常规金属氧化物气体传感器的解吸和吸附特性需要补充设备,例如加热器,这对于低功率IoT监测系统并不最佳。基于回忆的传感器(气体)由于其优势,包括高响应,低功耗和室温(RT)操作,已研究为创新的气体传感器。基于Igzo,提议的异丙醇酒精(IPA)气体传感器显示出105 s的检测速度,在RT时为50 ppm的IPA气体的高响应速度为55.15。此外,使用脉冲电压在50 µs中可以快速恢复到初始状态,而无需清除气体。最后,集成了一个低功率电路模块以进行无线信号传输和处理,以确保IOT兼容性。即使整合到IoT系统中,也证明了基于Igzo气体的传感结果的稳定性。这可以在〜0.34兆瓦时实现节能气体分析和实时监测,从而支持通过脉冲偏置恢复。这项研究提供了对物联网气体检测的实用见解,为敏感的低功率传感器提供了无线传感系统。
2。二氧化碳等效物(CO 2):二氧化碳是最重要的温室气体,但不是唯一的温室气体。为了捕获所有温室气体排放,研究人员用“二氧化碳等效物”(Co 3.EQ)表达了它们。这不仅考虑了所有温室气体,而不仅仅是Co₂。以表达二氧化碳等效碳(CO 2)中的所有温室气体,每个温室气体都由其全球变暖潜力(GWP)值加权。GWP测量与CO₂相比,气体产生的变暖量。co₂的GWP值为一个。如果气体的GWP为10,则该气体的1千克将产生变暖效果的10倍,作为一公斤的co₂。通过将特定温室气体的排放量乘以其GWP因子,计算每种气体的二氧化碳等效物。可以在不同的时间尺度上说明这种变暖。为了在100年内计算CO 200,我们将每种气体乘以100年的GWP(GWP100)。总温室气体排放 - 在CO₂EQ中测量 - 然后通过求和每个气体的CO 3.EQ值来计算。
MedTech Europe 是欧洲医疗技术行业贸易协会,涉及诊断、医疗设备和数字健康等行业。我们的会员包括国内、欧洲和跨国公司,以及研究、开发、制造、分销和供应医疗相关技术、服务和解决方案的国家医疗技术协会网络。
温室气体是具有全球变暖潜力(GWP)的气体。这是为了比较不同气体的全球变暖影响。特别是,相对于1吨二氧化碳(CO 2)的排放,这是对1吨气体的排放将吸收的能量的量度。我们的排放量在TCO 2 E(二氧化碳等效)中报道。