摘要:我们同时优化了气冷地热兰金周期的设计和操作,最大化总年收益(TAR),同时考虑了基于不同环境温度的多种操作场景。为了准确捕获热交换器和涡轮机的现实外设计行为以及整体系统,我们结合了考虑具有尺寸和操作条件的性能变化的组件模型。我们采用了混合机械性数据驱动的建模方法,涉及人工神经网络(ANN)作为准确流体特性的替代模型,以及中间表达式,其中ANN改善了优化问题的易干性。我们证明了在设计问题中考虑多个操作条件的重要性,并提出了一种使用我们的开源求解器Maingo在全球范围内制定和解决此类问题的方法。
使用数值分析比较了具有不同内部结构的七个水冷微型冷水冷板的热和液压性能。最近对高性能计算的需求不断提高,导致电子设备的热管理挑战。除了危险的片上温度,异质整合和升高温度(热点)的局部区域还导致芯片级温度分布不均匀。结果,电子设备的寿命和可靠性受到不利影响。由于限制了气冷散热器,开发了几种新方法,例如液体冷却的微通道冷板,以解决这些挑战。这项工作的目的是提供比较的数值研究,以了解不同微型通道冷板内部结构在具有不均匀功率图和热点的芯片的热管理中的有效性。冷板热
报告标题页 第四十九次报告——私人租赁监管 2 住房和社区部 第五十次报告——反弹贷款计划:后续行动 7 商业、能源和工业战略部 第五十一次报告——改善刑事司法系统中妇女的待遇 15 司法部 第五十二次报告——国防部装备计划 2021-31: 20 国防部第一份报告——商业、能源和工业战略部最终报告和 2020-21 年账目 25 商业、能源和工业战略部第三份报告——先进气冷反应堆的未来 31 商业、能源和工业战略部 下议院、上议院、修复和更新赞助机构和交付机构对公共账目委员会 2022-23 届会议的回应 第十份报告——威斯敏斯特宫的修复和更新 36 下议院、上议院、恢复和更新赞助机构和交付机构
摘要。基于改良的Candle-B(Mcandle-B)燃烧策略的气冷冷却快速反应堆(GFR)核心类型与薄煎饼的概念设计的比较研究。mcandle-b是一种燃烧策略,它利用天然铀或耗尽的燃料作为其输入周期。比较的反应堆芯的概念设计是高缸和煎饼缸。在这种情况下,使用的燃料为U-10%ZR,SS-316作为覆层材料和氦作为冷却剂。两个反应器核的总体积相同,即15.4 m 3。带有PIJ的SRAC 2K6软件,并使用引用模块进行模拟。PIJ模块用于燃料电池计算,引文模块用于反应堆核心计算。比较结果表明,煎饼芯使反应堆芯可以分别用于50%:10%:40%的燃料,分别用于燃料,覆层和冷却液。获得的设计可以在不加油的情况下运行10年。
邓杰内斯有两座核电站: • 邓杰内斯 A 核电站归核退役管理局 (NDA) 所有。Magnox 目前是许可证持有者,与核退役管理局签订了退役该核电站的合同。该核电站于 2006 年底停止发电。Magnox 危害评估和后果评估得出结论,邓杰内斯 A 核电站不需要场外计划。 • 邓杰内斯 B 核电站由 EDF Energy 作为所有者和许可证持有者运营。它拥有两座先进的气冷反应堆。2021 年 6 月 7 日,EDF 宣布邓杰内斯 B 核电站将进入燃料清除阶段,核电站将退役。 • 2021 年 6 月,EDF 制定该计划所依据的法律如下; • 《核设施法》(1965 年)要求运营商获得核监管办公室 (ONR) 的许可,条件是必须制定 ONR 批准的应急安排以应对任何现场紧急情况。 • 《辐射(应急准备和公共信息)条例》(2019 年)规定了以下义务:o 运营商应:
参考:T. Chapman 于 2022 年 1 月 4 日致核管理委员会 (NRC) 的信函,“X Energy, LLC (X-energy) 提交的 Xe-100 白皮书:物理保护系统方法” 2022 年 1 月 4 日,X Energy, LLC (X-energy) 提交了上述白皮书。在 2022 年 2 月 15 日收到 NRC 工作人员的反馈后,X-energy 决定提交修订后的白皮书,该白皮书作为本信函的附件附上。本提交描述了 X-energy 为 Xe-100 高温气冷反应堆 (HTGR) 工厂开发物理安全计划模板所采用的方法的要素。它已提供给 NRC 审查,如报告中所示,预计将在未来的 Xe-100 许可活动中引用。具体审查时间表将继续与 X-energy 的 NRC 项目经理一起制定。本信函不包含任何承诺。如果您有任何疑问或需要更多信息,请联系 Ingrid Nordby,邮箱:inordby@x-energy.com 。
摘要 . 印度尼西亚实验动力反应堆 (RDE) 的基本设计参考了中国清华大学自 1995 年以来开发并于 2000 年 12 月首次通过评审的高温气冷反应堆测试模块 (HTR-10)。目前,核电站 (NPP) 行业控制系统市场使用微控制器和可编程逻辑控制器 (PLC)。然而,由于基于计算机的技术容易受到网络攻击、软件共因故障 (CCF) 和系统复杂性的影响,因此,RDE 设计的开发应根据最新技术考虑,并符合在维护核电站安全方面发挥重要作用的仪表和控制 (I&C) 系统的发展。本研究涉及基于 PLC 系统的 I&C 逆向工程程序,以从先前的设计中获得设计规范,从而通过使用现场可编程门阵列 (FPGA) 作为替代平台来考虑系统硬件,从而提高其可靠性。在开发逆向工程之前,应该分析为什么 FPGA 成为替代 PLC 系统的替代系统。逆向工程过程将涵盖基于模型的系统工程 (MBSE),这是一种正式的建模应用程序,用于支持系统需求、设计、分析、验证和确认 (V&V) 活动。该过程从概念设计、需求分析开始,持续
最近的研究表明,有效的热管理系统对于维持锂电池系统的性能,寿命和安全性是必要的。在这项工作中提出了一种独特而新颖的建模方法,其目的是估算用于大规模锂电池套件的空气冷却系统的热性能。总体模型由子模型组成,包括电池电池的分析模型和电池模块的数值热和流模型,分别针对实验数据和经验相关性进行了验证。所选方法意味着子模型可以独立运行,从而允许精确的瞬态仿真,并减少了处理时间。该模型用于评估细胞间距对专为混合动力汽车设计的气冷电池系统的热性能的影响。结果表明,细胞内的最高温度与横向和纵向俯仰比正相关。但是,模块的最大温度差与这些音高比率为负相关。相比之下,温度均匀性显示非单调的行为,使其成为平衡温度升高和热梯度之间的适用标准。此外,在早期行中注意到了相当大的温度不均匀性,随着俯仰比的降低,这变得不那么显着。
Piyush Sabharwall 博士是爱达荷国家实验室 (INL) 核系统设计和分析部门的高级核研究科学家。Piyush 在核/热工程领域拥有超过 14 年的研发经验。他担任美国能源部核能办公室微反应堆研发项目的技术负责人,并领导多功能测试反应堆气冷筒式回路的开发。他帮助 INL 成为验证和确认、实验计划开发、小型模块化反应堆、熔盐反应堆技术和综合能源系统等领域的智力领袖。Piyush 撰写了两本书,为先进反应堆和热系统、工艺传热技术书籍撰写了章节,并发表了 120 多篇同行评审出版物。他是德克萨斯 A&M 大学机械工程系的兼职副教授,并在 ASME 传热部门(K-9 和 K-13 委员会)任职。他是 EPRI 先进(第四代)反应堆技术顾问小组的成员。Piyush 为国内外各行各业提供咨询服务,在积累技术专长的同时,专注于市场研究和经济可行性,以重建美国核工业基础设施,并使美国工业继续成为全球能源市场的领导者。
会见美国核反应堆技术的演讲者 Sam Suppiah 博士目前是加拿大核实验室 (CNL) 化学工程部门和氚设施运营设施管理局的经理,该实验室位于安大略省 Chalk River。他在英国伯明翰大学获得化学工程学位和博士学位,在加入 AECL(现为 CNL)之前,曾在英国的一家承包公司和英国天然气公司工作。他是安大略省的一名专业工程师和认证的项目管理专业人士 (PMP)。他在重水和氚、催化、电解技术、燃料电池技术、核和非核电池技术、高温和中温热化学过程制氢、蒸汽电解和储能等领域拥有超过 35 年的专业知识。他目前在 CNL 制氢领域的工作重点是开发混合铜氯循环。这项开发即将在 2021 年实现实验室规模的连续运行演示。Suppiah 博士一直领导与工业界、研究所和大学在上述许多领域开展合作。他是加拿大代表,也是第四代超高温气冷堆制氢项目管理委员会的现任主席。他还是加拿大氢能和燃料电池协会 (CHFCA) 的董事会成员。他经常在国际原子能机构的技术会议以及其他关于制氢的国家和国际会议上发表演讲。