© 2011 Emerald Group Publishing Limited。这是作者创作的版本,该版本已通过同行评审并被 Emerald Group Publishing Limited 的《航空工程与航天技术》接受出版。它采纳了审稿人的评论,但出版过程中产生的变更(如文字编辑、结构格式)可能不会反映在本文档中。已发布的版本可在以下网址获取:[http://dx.doi.org/10.1108/00022661111120953]。
1 https://ghgprotocol.org/sites/default/default/dandards/dandards/ghg-protocol-revise.pdf(第25页)2 https://ghgprotocol.org/sites/defiles/defiles/defiles/defiles/files/files/dandards/andandards/dandards/ghg-protot-colot-colot-colot-cocol-revise.pdf(Page 8888)1 https://ghgprotocol.org/sites/default/default/dandards/dandards/ghg-protocol-revise.pdf(第25页)2 https://ghgprotocol.org/sites/defiles/defiles/defiles/defiles/files/files/dandards/andandards/dandards/ghg-protot-colot-colot-colot-cocol-revise.pdf(Page 8888)
•其分子具有相同的特性,无论生产方法如何•安全标准和法规是色盲和技术不可知的•分裂,因此通过颜色编码来歧视生产途径是错误的方法•脱碳是关键词!
1.1机器设计硕士学位(2年释放)申请人必须是工业和制造工程学学士学位学士学位,生产工程,机械工程,机械工程,化学工程,化学工程或任何同等荣誉学位。拥有相关的工程实践经验将是一个额外的优势。 1.2石化技术硕士学位(2年释放)申请人必须是化学和工艺系统工程,工艺工程,化学工程,燃料工程,生产/工业和制造工程或任何等效荣誉学士学位的技术荣誉学士学位。 1.3电信和无线系统技术硕士学位(2年释放)申请人必须是电子工程,电信工程,电子和仪器工程,电子和通信工程或任何等价荣誉学士学位的技术荣誉学士学位。 1.4计算机集成制造技术硕士学位(2年释放)申请人必须是工业和制造工程,材料技术和工程,电子工程,化学工程/技术或任何同等荣誉学位的工业和制造工程学士学位学士学位。 拥有相关的工程实践经验将是一个额外的优势。拥有相关的工程实践经验将是一个额外的优势。1.2石化技术硕士学位(2年释放)申请人必须是化学和工艺系统工程,工艺工程,化学工程,燃料工程,生产/工业和制造工程或任何等效荣誉学士学位的技术荣誉学士学位。1.3电信和无线系统技术硕士学位(2年释放)申请人必须是电子工程,电信工程,电子和仪器工程,电子和通信工程或任何等价荣誉学士学位的技术荣誉学士学位。1.4计算机集成制造技术硕士学位(2年释放)申请人必须是工业和制造工程,材料技术和工程,电子工程,化学工程/技术或任何同等荣誉学位的工业和制造工程学士学位学士学位。拥有相关的工程实践经验将是一个额外的优势。拥有相关的工程实践经验将是一个额外的优势。
EERC免责声明法律通知:该研究报告是由北达科他大学能源与环境研究中心(UND EERC)编写的,是北达科他州环境质量系(赞助商)赞助的工作的帐户。根据和EERC的知识和信念,该报告是真实的,完整的和准确的。但是,由于工作的研究性质,既没有EERC,或其任何董事,官员或雇员,都没有对使用任何信息,设备,产品,方法,过程或类似物品或代表其使用不会侵犯私有权利的任何信息,设备,产品,方法或类似物品,都对使用任何信息,设备,产品,方法或类似物品都有任何法律责任或责任。在此引用以商业名称,商标,制造商或其他方式参考任何特定的商业产品,流程或服务,或者不一定构成或暗示其认可或建议由UND EERC构成或建议。赞助商理解并接受该研究报告和任何相关的可交付成果均针对特定项目。报告者或其他人对报告或任何关联的可交付成果的任何重复使用,扩展或修改都将处于该党的唯一风险,并且不承担责任或对UND EERC或其董事,高级管理人员和雇员的责任或合法。
摘要。通过大气色谱扫描成像吸收光谱仪 (SCIAMACHY) 的第 6 通道测量的羟基 (OH) 短波红外辐射 (OH(4-2、5-2、8-5、9-6)) 用于推算 80 至 96 公里之间的 OH(v = 4、5、8 和 9) 浓度。利用反演的浓度模拟大气探测宽带辐射测量 (SABER) 仪器测得的 1.6 µm 处的 OH(5-3、4-2) 积分辐射和 2.0 µm 处的 OH(9-7、8-6) 积分辐射,SCIAMACHY 测量的光谱范围并未完全覆盖这些辐射。平均而言,与使用 SCIAMACHY 数据的模拟相比,SABER“未滤波”数据在 1.6 µm 处大约大 40%,在 2.0 µm 处大约大 20%。 “未滤波” SABER 数据是一种产品,它考虑了仪器宽带滤波器的形状、宽度和透射,它们不覆盖相应 OH 跃迁的完整旋转振动带。研究发现,如果使用已发布的 SABER 干涉滤波器特性和 HI-TRAN 数据库中的最新爱因斯坦系数手动执行滤波过程,SCIAMACHY 和 SABER 数据之间的差异最多可减少 50%。讨论了与模型参数不确定性和辐射校准有关的剩余差异。
随着热电联产、燃气发电等能源转换技术的发展,区域综合能源系统中电、气、热等多种能源形式高度耦合。本文针对区域电力—天然气系统(REGS),重点研究电力系统与天然气系统的相互作用,提出一种基于分布式注气的REGS综合分析模型,以区域能源站(RES)为能量耦合环节,综合考虑分布式注气成本、弃风惩罚以及能源网络约束,优化REGS能量流,以最小化RES运行成本。进一步以多个RES和分布式注气为控制,研究各类可调资源对REGS运行成本经济性、可再生能源消纳灵活性以及压力保障能力安全性的影响。随后,研究了不考虑注气点的系统优化调度策略和考虑氢气或提质沼气作为注气属性的相应策略。数值算例表明,随着分布式注气点的引入,考虑沼气升级和注氢的经济调度策略提高了系统的经济性、降压水平和风电消纳率,对提高REGS的稳定性和灵活性具有重要意义。© 2020 由 Elsevier Ltd. 出版。
泄漏检测摄像机 (P/N 99V36009001000) 可在安全环境中快速检测泄漏;机械师无需直接接触排气管道,排气管道在 ENG 或 APU 加压时会变热。它可以检测到任何空气泄漏,无论是否变热,其可靠性都比现有技术更高。它能够定位超声波源,这是空气泄漏的典型迹象。
1。引入许多相互作用粒子的物理系统高度复杂,由于粒子之间的相关性而难以分析。许多粒子量子系统特别困难,因为纠缠导致量子相关性引起的添加综合性。外来现象(例如超流体和超导性)是由于这种量子相关性引起的。我们仍然无法对这些现象做出充分的数学解释,但是近年来在这些非常基本的问题上已经有了一些进展。我们将简要说明量子多粒子系统分析的特别基本方面的进展。这个问题是要了解基态,即最低能量的状态,即在三个维度上相同粒子相互作用的量子系统。考虑一个大的,即热力学,密度系统> 0的相同非层次主义颗粒的系统。我们对这些粒子之间相互作用的唯一假设是它是一种反击的两体相互作用。问题是这种系统的基态能量密度是什么。在1957年的精确纸中[12],李,黄和杨预测能量密度e有一个通用的渐近公式。