AFFF aqueous film-forming foam APCD air pollution control device ARFF aircraft rescue firefighting BDL below detection limit BMP best management practice C Celsius CAA Clean Air Act CaF 2 calcium fluoride CaO calcium oxide Ca(OH) 2 calcium hydroxide C&D construction and demolition CDC Centers for Disease Control and Prevention CDR Chemical Data Reporting CEJST Climate and Economic Justice Screening Tool CERCLA Comprehensive Environmental Response, Compensation, and Liability Act CF 4 carbon tetrafluoride C 2 F 6 hexafluoroethane C 3 F 8 octafluoropropane CFR Code of Federal Regulations CHES Clean Harbors Environmental Services CHF 3 fluoroform CIC combustion–ion chromatography CI/MS chemical ionization mass spectrometry CKD cement kiln dust DE destruction efficiency DoD Department of Defense DOE Department of Energy DRE destruction and removal efficiency ECHO Enforcement Compliance and History Online EJ environmental justice EPA United States Environmental Protection Agency ESP electrostatic precipitator ESTCP Environmental Security Technology Certification Program F Fahrenheit FAA Federal Aviation Administration FBC fluidized bed combustor FF fabric filter FML flexible membrane liner FTIR Fourier transform infrared spectrometry FTOH fluorotelomer alcohol FTS荧光素体磺酸200财年2020年NDAA国防授权法2020财政年度GAC颗粒活性碳GCCS煤气收集和控制系统HAP危险空气污染物
ACC 美国化学理事会 ADONA 4,8-二氧杂-3H-全氟壬酸铵的商品名,3M 氟聚合物加工助剂技术中使用的一种化学品 AF&PA 美国森林与造纸协会 AFFF 水性成膜泡沫 APFO 全氟辛酸铵(PFOA 的铵盐) ASTSWMO 州与地区固体废物管理官员协会 ATSDR 美国卫生与公众服务部,有毒物质与疾病登记署 BAF 生物累积因子 BCF 生物浓缩因子 CAFE 美国国家海洋与大气管理局化学品水生生物命运与影响数据库 CBI 机密商业信息 CDR 化学数据报告 CFR 联邦法规 CWA 清洁水法 DMR 排放监测报告 DOD 美国国防部 DONA 4,8-二氧杂-3H-全氟壬酸的商品名,3M 氟聚合物加工助剂技术中使用的一种化学品 DWTD 饮用水可处理性数据库 DWTP 饮用水处理工厂 ELG 废水排放限制指南和标准 EPA 美国环境保护署 EPA OPPT 美国环境保护署,化学品安全和污染防治办公室,污染防治和毒物办公室 ETFE 乙烯四氟乙烯 F-53B 氯化多氟烷基醚磺酸的商品名,包括 9Cl-PF3ONS(“F-53B 主”)、11Cl-PF3OUdS(“F-53B 次”)及其钾盐 FAA 美国部门
在我们的情况下,另一种副作用是延长的勃起。当我们查看文献时,我们没有发现由于使用氟毒素而导致的任何长时间勃起的病例。尽管与长时间勃起最相关的抗抑郁药是曲唑酮,但基本机制仍不清楚。曲唑酮被认为通过拮抗5-HT2A / 5-HT2C和α2肾上腺素能受体引起长时间的勃起和priapism(4)。氟氟众胺诱导的延长勃起可能与α受体阻滞有关。氟伏沙明与5-HT1A,5-HT2C的相互作用可以通过增加副交感神经的张力来帮助勃起,同时通过降低交感神经抑制射精(19)。在周围神经系统中,它可以通过减少交感神经排放和增加副交感神经的排放来延长勃起时间(19)。阴茎勃起被5-HT1B,5-HT1C,5-HT1D受体的刺激激活,而5-HT1A,5-HT2刺激抑制它(20)。
国防部 (DoD) 根据《综合环境反应、补偿和责任法案》(CERCLA) 和国防环境恢复计划 (DERP) 开展清理工作。我们的目标是以基于风险、财政健全的方式保护人类健康和环境。本备忘录根据美国环境保护署 (EPA) 的最新信息,为调查全氟辛烷磺酸盐 (PFOS)、全氟辛酸 (PFOA)、全氟丁烷磺酸 (PFBS)、全氟壬酸 (PFNA)、全氟己烷磺酸盐 (PFHxS) 和六氟环氧丙烷二聚酸 (HFPO-DA 或 GenX) 提供了明确的技术指导。本指导适用于调查由环境恢复账户资助、基地调整和关闭账户资助以及联邦空军和陆军警卫队运营和维护账户资助的场地的这些化学品。
众议院报告 116-445 第 29 页,附带 HR 7609《2021 年军事建设、退伍军人事务和相关机构拨款法案》,要求国防部环境部副助理部长向国会国防委员会提交季度报告,介绍国防部 (DoD) 在基地重新调整和关闭 (BRAC) 地点识别和修复全氟辛烷磺酸 (PFOS) 和全氟辛酸 (PFOA) 方面取得的进展,以及提高透明度的建议。此外,众议院报告 117-81 第 22 页,附带 HR 4355《2022 年军事建设、退伍军人事务和相关机构拨款法案》和 HR 2471《2022 年综合拨款法案》的联合解释性声明,要求国防部环境和能源恢复副助理部长为国会国防委员会准备一份综合报告,建立有关 BRAC 地点 PFOS/PFOA 的信息基线。本报告涵盖 2021 财年要求的所有剩余季度报告和 2022 财年报告语言中要求的有关已关闭军事设施中 PFOS/PFOA 的信息基线。具体而言,本报告包括 (1) 清理过程的背景;(2) 提高国防部清理过程透明度的建议;(3) 所有 BRAC 地点的列表;(4) 指示是否在饮用水和地下水中检测到 PFOS/PFOA; (5) 检测到的 PFOS/PFOA 水平;(6) 有关 PFOS/PFOA 可能来源的信息;(7) 对当前缓解措施和拟议补救计划的说明;(8) 补救状态;(9) 清理时间表;以及 (10) 对调查和清理 BRAC 地点全氟和多氟烷基物质 (PFAS) 的当前和未来成本的估计。
锂离子电池行业正在不断扩大,以满足汽车电气化、大规模储能和移动电子应用的需求。需要下一代氟基添加剂和共溶剂来提供容量更高、寿命更长、安全性更高的电池。快速发展的电池行业需要包括氟在内的关键电池材料的安全供应链。随着电池和其他应用对氟的需求不断增长,获取氟将变得更具挑战性。
当前国防部 (DoD) 政策要求公开报告可检测的全氟和多氟烷基物质 (PFAS) 水平。通过常规监测,最近在横田空军基地 (AB) 供水系统中检测到了 PFAS。虽然这不是紧急情况,但作为我们的客户,您有权知道检测到了什么、您应该做什么以及我们正在采取哪些措施来纠正这种情况。2024 年 10 月 28 日,横田空军基地根据国防部 2023 年 7 月 11 日发布的政策“国防部拥有的饮用水系统中全氟和多氟烷基物质采样备忘录”,对整个基地的饮用水进行了 PFAS 采样。横田空军基地分析了 29 种 PFAS 化合物。下表包含检测到的 PFAS 的结果。有关 PFAS 的更多指导,请使用以下链接:ASD(EI&E) - 全氟和多氟烷基物质 (PFAS) (osd.mil)。
•它可用于驱动光合作用(健康植物中83%的能量),•可以将其散发为热量(最多15%的能量),或者可以将其重新定为红色叶绿素荧光(3-5%)。这三个命运是互补的,因此荧光产量的变化反映了光化学效率和热量耗散或非光化学淬火的变化。叶绿素荧光成像已成为对生物和非生物刺激或环境变化的反应,以监测植物光合作用的变化的最强大和流行的工具之一。叶绿素荧光动力学参数的变化经常发生在应激的其他影响之前。叶绿素荧光的检测是快速,无创的,并且可以随着时间的推移观察和定量抑制作用。在抑制位置的异质性可以通过叶绿素荧光成像系统轻松显示和定量。氟型设备用于在脉冲振幅调制模式和饱和脉冲方法中监测荧光动力学,该方法提供了有关植物光合作用,生理和代谢条件的大量信息,以及其对各种应力条件的敏感性。叶绿素荧光产率是在黑暗适应植物中使用短饱和闪光(饱和脉冲)或用光合作用的活性阳光照明的。叶绿素荧光的变化用于描述植物对植物表面提供的光能的光化学和非光化学淬灭的表现。
全氟烷基和多氟烷基物质(PFA),导致它们在自然环境中的广泛存在。这是由于碳 - 氟键的显着稳定性,在自然环境中很难化学降解。pfass通过每天消费水和食物积累在人体中,这可能会导致潜在的健康影响,例如免疫,代谢和神经发育作用。因此,鉴于近年来其毒性和生物利益性能,全球对PFA的修复的关注越来越大。电化学晚期氧化过程(EAOPS)已开发用于修复PFASS,并已应用于废水处理中。在这些过程中,一种高强大的氧化剂羟基自由基((•)OH)是在溶液中产生的,可以氧化有机污染物。Eaops已成为一种环保和有效的治疗过程,以破坏PFAS。但是,它们的反应速度缓慢,性能稳定性差,高能量消耗和电极侵蚀阻碍了其用于水处理的商业化。本文概述了最先进的阳极材料及其通过电化学修复以及未来的推荐修补的相应降解效率。提供了有关基本原理和实验设置的全球视角,检查并讨论了不同的阳极电极,以及EAOPS对PFAS修复的挑战。