图 1 在经典计算机上使用不同的轨道基组初始化为不同自旋多重性的 LiH 和 TiH 双原子分子的预测 CCSD 键解离曲线。预测的 TiH 基态配置会根据所选的轨道基组而变化。基态配置用实心标记表示,而较高能量配置用空心标记表示。
摘要:由于对气候变化、环境恶化和能源安全的担忧,氢气作为能源载体的潜力得到了广泛认可,但氢气的储存和运输仍然是重大挑战。具有钙钛矿晶体结构的氢化物可以在较小的体积内储存大量的氢气,并且相对容易产生氢气。其中,三元钙钛矿氢化物 NaMgH 3 具有相对较高的理论储氢密度和氢吸收和解吸的可逆性。在本研究中,采用密度泛函理论框架下的第一性原理计算,研究了用 K ? 取代 Na ? 的影响。对Na1–xKxMgH3(x0:75Þ)结构、电子和储氢性能的影响。结果表明,用K–取代Na–导致晶格参数略有下降、晶胞体积增加,MgH6八面体变得更加扭曲,这是主体材料不稳定的一个很好的指标,最终导致分解温度从560.1降低到489.6K,这有利于储氢应用。
摘要该项目涉及在印度等发展中国家使用可再生电力来生产大规模使用的氢。印度的氢冰车市场被确定为氢/金属氢化物技术的潜在近期应用。印度不仅代表了一个大型的两轮车市场,而且还代表着最快的市场。氢可以使用两个可再生,分布的电能,PV和基于渣nopasse的能力的来源来自水的电解。甘蔗渣是制糖业的副产品。我们展示了这两种情况在经济上是如何可行的。卵子金属氢化物用于在板载和运输中存储氢。氢/金属氢化物的其他用途包括分布式发电,以替代污染煤油或柴油发电机套件以及用于便携式功率。因此生产的可再生氢也可以用作烹饪燃料。
TCR 堆芯将由传统制造的氮化铀涂层燃料颗粒 (TRISO) 和先进的碳化硅结构组成。如果碳化硅可以提供一些中子减速,额外的减速将有助于减少达到临界状态所需的燃料质量。已经研究了几种减速剂材料,发现钇氢化物是 TCR 燃料的极佳减速剂材料。钇氢化物体积分数约为 40% 将使堆芯设计能够舒适地进行低减速,同时大幅减少燃料需求。计算是在简单的几何形状下进行的,在更现实的堆芯设计中,钇氢化物的好处肯定会减少。尽管如此,人们相信本文描述的趋势将继续适用。致谢
每种电池技术都具有内在的优势和缺点:例如镍 - 金属氢化物电池提供相对较高的特定能量和功率以及安全性,使它们成为混合动力汽车的首选功能,而水性有机流动电池(AORFB)则具有可持续性和简单的活性材料的简单更换,以及独立的能源和电源,使其对固定的能量存储非常有吸引力。[1]在本演讲中,一种新的电池技术通过使用氧化还原介导的反应融合了上述电池技术,从本质上描述了每种独立技术的主要特征;例如实心材料的高能量密度,易于可回收性和能量和功率的独立可伸缩性(图1A)。[2]为此,Ni(OH)2和MHS限制在AORFB的正和负储层中,该储层采用了苯烷钾的碱性溶液,并混合了2,6-二羟基羟基酮酮和7,8-二羟基苯二醇和7,8-二羟基苯二醇和阳离子的混合物。基于储层的能力达到128 WHL -1的能量密度,留出了足够的改进空间,直至378 WHL的理论极限 -
氢化转化和氢化物将生物基本原料纳入航空燃料 - 生物基和废物流的纯化和价值,固定床催化剂的合成,长期飞行量表测试
LAVO 采用创新的专利金属氢化物来生产混合电池,其使用寿命是同等价格的锂电池的三倍,同时还节能、碳中和、安全、不易燃,并且所有组件均可回收利用
最近对压缩二进制氢化物的研究揭示了在近室温度上实现超电导率的潜力。尽管如此,可能表现出可能表现出较高临界温度值(T C)的组成元素的可用决策程序远非最佳。换句话说,在探索毫无主张的化合物时浪费了许多实验性和数值努力。通过对含有超过580个二元氢化物超导体的数据库进行深入研究,我们能够观察到T C与所检查化合物的选定物理化学特性之间的一些有趣的关系。在研究的参数中,发现较重原子的分子量和氢化氢原子的总质量的总和比氢化物(M x /m H)的总质量是最有价值的指标,可以帮助您筛选新的有希望的超导体候选者。这是因为最高的t c需要最低的m x /m h比。统计分析表明,在0 预计,这些发现不仅可以通过改善未来的超导体候选者的选择来更有效地利用资源,而且还将加速正在进行的实验和数值研究,这应该在短时间内带来新的令人兴奋的发现。预计,这些发现不仅可以通过改善未来的超导体候选者的选择来更有效地利用资源,而且还将加速正在进行的实验和数值研究,这应该在短时间内带来新的令人兴奋的发现。