0.1.5 红斑(氧化亚铜腐蚀)当铜基金属和银涂层之间在湿气(H 2 O)和氧气(O 2 )存在下形成原电池时,镀银软铜或退火铜导体(元件引线、单股和多股线以及印刷电路板导体)中可能会出现红斑。一旦开始,铜基导体的牺牲腐蚀会在氧气存在下无限期地持续下去。腐蚀副产物(氧化亚铜晶体)的颜色可能因可用氧气水平的不同而不同,但通常表现为银涂层表面的红色/红褐色变色。
氧化亚铜(CuOH)是一类重要的金属化合物,包括硫族化物[5,6]、卤化物[7,8]和一些复杂的盐(例如 Chevreul 盐)[9],它们在催化[10,11]、传感[12,13]、能量转换[14,15]和光学[16]等领域有着广泛的应用。其中,氧化亚铜(CuOH)长期以来一直受到人们的广泛关注。[17,18] 早在 20 世纪初,Miller 和 Gillett 就观察到在低温下(低于 60 °C)用铜工作电极电解 NaCl 溶液时,会产生黄色的 CuOH 沉淀。[19,20] 随后,人们进行了多项研究,探究通过各种方法合成的 CuOH 的特征结构和性能。 [21–23] 然而,在早期的研究中,CuOH 大多以块状固体形式存在,结构为亚稳态,由于缺乏适当的保护以防止氧化和/或脱水,当暴露于环境或热处理时,淡黄色沉淀物会迅速变为深红色,表明形成了 Cu 2 O。这种结构不稳定性使研究所得 CuOH 的性质和应用变得困难。2012 年,Korzhavyi 等人 [24] 进行了理论研究,证明 CuOH 可以以固体形式存在;然而亚稳态导致形成各种晶体结构构型的随机混合物,例如 Cu 2 O 和冰 VII H 2 O。Soroka
氧化亚铜 (Cu 2 O) 是一种具有大激子结合能的半导体,在光伏和太阳能水分解等应用中具有重要的技术重要性。它还是一种适用于量子光学的优越材料体系,能够观察到一些有趣的现象,例如里德堡激子作为高激发原子态的固态类似物。之前与激子特性相关的实验主要集中在天然块体晶体上,因为生长高质量合成样品存在很大困难。本文介绍了具有优异光学材料质量和极低点缺陷水平的 Cu 2 O 微晶体的生长。本文采用了一种可扩展的热氧化工艺,非常适合在硅上集成,片上波导耦合的 Cu 2 O 微晶体就证明了这一点。此外,还展示了位点控制的 Cu 2 O 微结构中的里德堡激子,这与量子光子学中的应用有关。这项工作为 Cu 2 O 在光电子学中的广泛应用以及新型器件技术的开发铺平了道路。
DOI:10.1002/((请添加稿件编号)) 文章类型:通讯 金属有机框架修饰的氧化亚铜纳米线用于长寿命电荷光催化 CO2 还原为 CH4 吴浩,孔欣颖,温晓明,柴翔彪,Emma C. Lovell,唐俊旺,吴云豪* 吴海峰,YH Ng 教授 香港城市大学能源及环境学院 香港九龙达之路 中国电子邮件:yunhau.ng@cityu.edu.hk 吴海峰,Emma C. Lovell,YH Ng 教授 颗粒与催化研究组 新南威尔士大学化学工程学院 澳大利亚新南威尔士州悉尼 2052 XY Kong,SP 教授。 Chai 先进工程多学科平台 化学工程学科,工程学院 莫纳什大学 Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia X. Wen 转化原子材料中心 科学工程与技术学院 斯威本科技大学 John Street, Hawthorn, VIC 3122, Australia J. Tang 教授 伦敦大学学院化学工程系 Torrington Place, London WC1E 7JE (英国)