Jon-Don 400 Medinah Road (630) 893-4747 紧急联系人 INFOTRAC 1-800-535-5053 帐号 76144 请注明名称和制造商识别号 GHS 分类 氧化性液体/固体(类别 2) 急性口服毒性(类别 5) 急性皮肤毒性(类别 5) 严重眼损伤/眼刺激(类别 2B) 接触途径:眼睛接触、皮肤接触、吸入和食入。 吸入:吸入雾气或蒸汽可能引起严重的呼吸道刺激,通常在停止接触后会消退。 眼睛接触:蒸汽可能会刺激眼睛。直接或长时间接触眼睛会引起疼痛和刺激,也可能造成永久性损伤。如果刺激时间过长,请立即就医。皮肤接触:反复接触可能导致皮肤刺激、干燥、皲裂。 食入:吞咽会导致胃肠道刺激和腐蚀。吞咽有毒。立即就医。 致癌潜力:尚未确定 急性影响:该产品被视为潜在刺激物。该产品不得用于第 1 部分中预期用途以外的任何其他用途。 慢性影响:尚未确定。
摘要:通过光化学方法将太阳能转换为燃料/化学物质,对满足全球能源需求的有很大的希望。目前,由于其氧化性和可还原性的双重优势,半导体光电素与氧化还原技术结合在污染物降解和继发能量产生方面进行了深入研究;但是,仍然存在挑战,特别是随着转化效率提高。自2004年石墨烯的初步引入以来,由于其特性较大的特定表面积,丰富的孔结构,可调节的带隙和高电导性,因此,三维(3D)基于石墨烯的光催化剂引起了极大的关注。在此,本综述提供了基于3D石墨烯的常用光催化剂的深入分析,概述了其构造策略以及最近在有机污染物的光催化降解中的应用,H 2 Evolution和CO 2减少。此外,本文探讨了3D石墨烯在增强光催化性能中所起的多方面角色。通过提供全面的概述,我们希望强调3D石墨烯是一种对环境有益的材料的潜力,并激发为未来应用的更高效,更具用力的基于石墨烯的气瓶光催化剂的开发。
摘要雌激素的生物学作用是由雌激素受体α或β(ERα或ERβ)介导的,这些雌激素受体α或β(ERα或ERβ)是广泛的核受体超家族的成员。大量体内和体外研究表明,经典ERα和ERβ调节循环雌激素的丧失导致胰腺β细胞和胰岛功能,GLUT4表达,胰岛素敏感性和葡萄糖耐受性,功能障碍性脂质稳态,氧化抑制作用,氧化性壳体和炎症性壳体的快速变化。非常明显,17β-雌激素(E2)可以完全逆转这些影响。本综述评估了当前对经典ER在临界途径和与胰岛素抵抗和2型糖尿病(T2DM)相关的分子机制中的保护作用的理解。它还研究了更年期激素治疗(MHT)在降低更年期妇女中T2DM的风险方面的有效性。临床试验表明,MHT对葡萄糖代谢的保护作用,这对于治疗中绝经妇女的T2DM可能很有用。但是,人们担心E2在绝经中肥胖和高脂血症的潜在副作用。有必要进行进一步的研究以获得理解并找到绝经后妇女治疗胰岛素抵抗和T2DM的其他雌激素替代方法。
全球航空工业市场呈现强劲增长趋势。最近,空中客车公司预测,到 2035 年,新飞机的需求将不断增长,投资额将超过 5 万亿美元 1 。在这种不断扩大的形势下,多个航空项目都提出了降低飞机运行过程中的燃油消耗、二氧化碳和氮氧化物排放量的要求 2 ,因此减轻重量是飞机制造商面临的关键问题。钛合金用于制造多种飞机部件,如起落架、发动机部件、弹簧、襟翼导轨、气动系统管道和机身部件 3-5 。这种广泛的适用性源于一系列令人印象深刻的优良特性,如高强度重量比、高抗氧化性、断裂韧性、耐腐蚀性、疲劳强度和抗蠕变性 6-8 。钛合金可分为三种不同的合金类别,分别称为 α、α+β 和 β 合金。抗蠕变性、可焊性、弹性模量和韧性等特性受每种类别的微观结构特征的影响 9-11 。人们已经探索了钛合金的物理冶金学,以增强各种工程应用的特定性能。用于结构飞机部件的钛合金的一些主要性能是疲劳强度、冲击强度、杨氏模量和硬度 12 。这些性能可以根据合金成分和微观结构控制进行定制,从而实现
创伤性脑损伤(TBI)是成人残疾的主要原因,是由于身体侮辱会损害大脑的原因。基于生长因子的疗法有可能通过提供针对谷氨酸兴奋性,氧化性损伤,缺氧和缺血的神经保护作用,并促进神经突生长和新血管的形成,从而减少继发性损伤的影响并改善结果。尽管在临床前研究中有很有希望的证据,但在TBI的临床试验中,很少有人测试过神经营养因素。翻译到诊所并不小,受到蛋白质的体内半衰期短,无法越过血液 - 脑屏障和人类输送系统的限制。合成肽模拟物具有代替重组生长因子的潜力,激活了相同的下游信号通路,并且大小降低和更有利的药代动力学特性。在这篇综述中,我们将讨论生长因子,其潜力可能调节因脑损伤而在包括脊髓损伤,中风和神经退行性疾病在内的其他适应症中试验的造成的损害。神经生长因子(NGF),肝细胞生长因子(HGF),神经胶质细胞系生长因子(GDNF),脑源性神经营养因子(BDNF),血小板生长因子(PDGF)和纤维细胞生长因子(FGF)的 tbi。
摘要:脑内活性氧 (ROS) 的产生受稳态控制,有助于正常的神经功能。脑老化或病理条件下控制机制的低效会导致 ROS 过量产生,从而导致氧化性神经细胞损伤和退化。在对氧化应激引起的神经功能障碍具有治疗潜力的化合物中,鸟嘌呤类嘌呤 (GBP) 最为典型,其中最典型的是核苷鸟苷 (GUO) 和核碱基鸟嘌呤 (GUA),它们的作用不同。事实上,将 GUO 施用给急性脑损伤(缺血/缺氧或创伤)或慢性神经/神经退行性疾病的体外或体内模型,可发挥神经保护和抗炎作用,减少活性自由基的产生,并通过多种分子信号改善线粒体功能。然而,将 GUO 施用给啮齿动物也会导致失忆效应。相反,代谢物 GUA 可通过暂时增加 ROS 生成和刺激一氧化氮/可溶性鸟苷酸环化酶/cGMP/蛋白激酶 G 级联来有效治疗记忆相关疾病,而这长期以来被认为对认知功能有益。因此,值得进一步研究以确定 GUO 和 GUA 的治疗作用,并评估这些化合物可以更有效地用于哪些病理性脑部疾病。
太空领域的研究和使用,包括最近对月球及更远太空的载人航天探索的复兴,推动了对航天器热防护系统 (TPS) 的更高性能材料的搜索。陶瓷和高性能碳都表现出适合 TPS 应用的材料特性,但可以使用增材制造 (AM) 方法最大限度地提高其性能。振动辅助打印 (VAP) 是一种新开发的 AM 工艺,可以使用高粘度的陶瓷形成聚合物与固体陶瓷颗粒的混合物来制造零件。这项工作探索了利用 VAP 的陶瓷夹层 TPS 的 AM。TPS 外层由碳化硅 (SiC) 组成,具有高抗氧化性、高熔点和低热导率。薄的中间层由碳基材料组成,可提供高平面热导率以重新分配热量。数值模拟表明,这种配置可有效降低模拟再入条件下的最高温度。由聚碳硅烷聚合物和纯 SiC 粉末制备出高粘度混合物,可使用 VAP 进行 3D 打印,并使用碳负载或碳纤维负载细丝通过标准热塑性挤出打印用于组装的中间层。SiC 组件固化温度高达 248.8°C,热解温度高达 1,600°C,并通过 SEM、EDS 和 XRD 进行表征并测试抗压强度。
摘要:由4 V类氧化物阴极活性材料(CAM),无机固态电解质(SE)和锂金属阳极组成的全稳态电池(ASSB)被认为是储能技术的未来。迄今为止,除了阳极处的已知树突问题外,由于SE的氧化降解和SE和CAM之间的氧化性降解以及机械完整性的丧失,阴极不稳定性被认为是ASSB发育中最重要的障碍。在本研究中,我们通过开发具有两个关键设计元素的复合阴极结构来解决这些挑战:(1)具有高氧化稳定性的HALIDE SE,可以直接使用未涂层的4 V类CAM和(2)单晶(SC)凸轮以消除与体积变化和机械性不稳定相关的跨层间裂纹。我们展示了在此类ASSB细胞上的表现出色的性能,并结合了未涂层的SC-Lini 0.8 CO 0.1 Mn 0.1 O 2(NMC811)CAM,A LI 3 YCL 6(LYC)SE(LYC)SE和合金阳极中的LI-李 - 在C/5的高排放能力为170 mAh/g,在C/5的能力下,在C/5的能力下,几乎是90%的1000 cyc cyceles 1000 cycles 1000 cycles。通过对多晶和单晶NMC811复合阴极的比较研究,我们揭示了在后一种细胞设计中实现这种稳定循环的工作机制。该研究强调了正确的阴极复合设计的重要性,并为表现更好的ASSB细胞的未来发展提供了关键的见解。i
摘要:代谢性疾病,如糖尿病和非酒精性脂肪肝 (NAFLD),对受影响的人类有多种负面健康后果。能量代谢失调是这些疾病病理生理学的一个关键因素。脂肪组织是能量稳态的基本调节器,利用几种氧化还原反应进行代谢。特别是棕色和米色脂肪组织在非颤抖性产热过程中进行高度氧化反应,将能量以热量的形式耗散。能量代谢的适当调节需要协调的抗氧化机制来平衡氧化反应。事实上,非颤抖性产热激活会导致氧化剂和抗氧化剂浓度发生显著变化,以适应各种氧化环境。目前代谢疾病的治疗方案要么从啮齿动物模型到人类的转化效果不佳(部分原因是创建生理相关的啮齿动物模型的挑战),要么往往有许多副作用,需要新的治疗方法。由于棕色脂肪组织活性增加会导致能量消耗增加,并与代谢健康有益(例如减少肥胖)有关,因此它作为代谢疾病的调节剂引起了人们的极大兴趣。有益健康影响的一个潜在原因可能是,尽管非颤抖性产热具有极大的氧化性,但它也与激活后氧化剂形成减少有关。然而,专门针对其氧化还原机制来改变代谢疾病仍然是一个未被充分探索的领域。因此,本综述将讨论脂肪组织在能量稳态中的作用、成人非颤抖性产热以及可能作为代谢疾病新治疗靶点的氧化还原机制。
动脉高血压和肥胖具有复杂的,多因素的病因,并且是由于基因,环境,生活方式和情绪因素的相互作用而产生的,并且被认为是低强度的慢性炎症状态,因为研究表明,这些临床条件与炎症标记的水平高。与肥胖相关的动脉高血压具有复杂的机制,但是交感神经多动作作为这些机制涉及的主要因素。在肥胖个体中,交感神经的增加主要源自胰岛素抵抗和随之而来的高胰岛素血症,肾素 - 血管紧张素 - 醛固酮的过度激活(MRS);和高稀释血症。这些因素导致各种途径导致交感神经的动力,并且可能是中枢神经系统或间接道路的直接刺激,但是由此产生的高肾上腺素能状态会触发一系列变化,导致高血压,动脉粥样硬化和增加的血栓形成风险。在肥胖症中观察到的交感神经多动引起的许多变化中,我们可以突出显示:增加糖化产物的形成,血管肌肉组织中营养作用的增加,较大的管状钠钠的表达,血管蛋白原mRNA在人脂肪组织中的血管蛋白酶mRNA的表达,通过脂肪组织中的氧化偏压,氧化牛的氧化偏压,氧化能力,氧化能力,氧化能力,通过氧化性氧化,氧化能力,氧化能力。在一氧化氮合成酶(ENOS)中。其他药物和其他脂肪蛋白,例如抗药药,维斯法汀和吉碱,也参与了肥胖个体动脉高血压的机制,但与瘦素和脂联素相关的作用较小。最近的研究表明,巨噬细胞的积极作用,因此在脂肪组织的炎症网络中具有先天的免疫力,这表明适应性免疫元素的重要参与,例如T细胞及其细胞因子。