磁性生物传感和肌肉骨骼修复。jeet Kumar Gaur,机械工程系,IISC班加罗尔,2024年11月21日,上午11:00,会议室:我@IISC摘要的开发用于肌肉骨骼修复的高级纳米复合材料代表了生物医学工程的重大飞跃。这些纳米复合材料利用水凝胶和羟基磷灰石(HAP)的特性来应对组织修复和再生的关键挑战。水凝胶具有高生物相容性和水含量,可为各种应用(包括软骨修复)提供灵活性和适应性。同样,HAP复合材料由于与天然骨矿物质的相似性而获得了骨骼替代的牵引力。将纳米颗粒整合到这些材料中可以显着增强其机械性能,生物活性和整体肌肉骨骼修复的有效性。水凝胶是由于其三维网络而以其生物相容性和高水位容量而闻名的柔性聚合物。这些水凝胶可以通过使用各种单体和交联器来增强其性能来修饰。研究探索了将水凝胶与纳米颗粒(例如磁性颗粒)融合在一起,以创建磁性生物传感和药物输送中的二凝胶。将碳纳米管(CNT)掺入带有镍纳米颗粒的聚丙烯酰胺(PAM)水凝胶中,可显着提高磁敏感性,强度和耐磨性。cnts将磁矩提高了85%,磁性增强,并且由于其与镍纳米颗粒的润滑性和协同作用,使磨损降低了40%。但是,传统的PAM水凝胶在机械强度和抗穿刺性方面面临挑战。为了解决这个问题,使用氧化钛(TiO2)和CNT分别和组合来提高PAM水凝胶的强度。PAM-TIO2-CNT复合材料表现出增强的抗压强度,弹性模量和刺激性。它还表现出自我修复的特性,生物活性和高细胞相容性,细胞活力约为99%。此外,为骨科应用开发了羟基磷灰石(HAP)复合涂料。制造了三个HAP复合材料(HAP + CNT,HAP + GRO和HAP + HBN),并以耐磨性,机械强度,亲水性和细胞毒性为特征。在其中,HAP + HBN复合材料表现出骨植入物的最佳特性,由于HBN的协同作用,具有提高的耐磨性,机械强度和亲水性。总体而言,将CNT和TIO2等纳米颗粒掺入水凝胶和HAP复合材料中代表了生物医学应用的材料特性的显着进步,包括软骨修复和骨骼植入物。这些肌肉骨骼修复纳米复合材料提供了增强的性能和耐用性,为改善组织再生和骨科修复的临床结果铺平了道路。关于扬声器Jeet Kumar Gaur是一名综合博士生,在IISC机械工程部的M S BOBJI(FM)实验室工作。用于表征的各种技术从从VSM获得的磁性磁滞图(振动样品磁力测定法)上磨损速率计算。在他的博士学位工作中,他与碱基合成并研究了纳米复合材料,作为有机聚合物(聚丙烯酰胺)和陶瓷(羟基磷灰石),用于磁性生物传感和肌肉骨骼修复应用。虽然聚丙烯酰胺纳米复合材料可用于软组织(例如软骨)替代品,但基于羟基磷灰石的纳米复合材料对于诸如骨置换涂料材料之类的硬组织可行。
(HV≥),产生的激子可以在材料表面的电子和孔的形成中进化。这可能导致氧化还原反应,从而促进活性氧(ROS)的原位形成,例如羟基自由基,超氧化物阴离子或单氧氧[2,4 - 6]。短寿命的反应性物种不仅可以降解有机污染物,还可以降解病毒和细菌[7-9]。在1970年代,福岛和同事[10]和弗兰克和巴德[11]的开创性作品证明了异质媒体中二氧化钛(TIO 2)所表现出的光催化性证券。该材料由于其特殊属性而被视为参考,例如光化学稳定性,低成本,紫外线范围内的带隙能及其出色的光效率[2,4,5]。最近,已经采取了许多努力来增强TIO 2光效率并解决了一些固有的局限性(例如,快速电荷重组和低可见光活动性激活)[12]。由于光催化性能很大程度上取决于表面特性,因此最被剥削的策略之一是TIO 2胶体纳米系统合成[13]。这有助于表面/体积比显着增加。然而,纳米颗粒(NP)倾向于自发地凝结,从而降低了有效的表面积并降低光催化活性。此外,迄今为止,从反应培养基中的NP恢复也是一项具有挑战性的任务[13]。为了克服这些缺点,已经进行了许多研究,以支持不同材料上的光催化纳米颗粒。聚合物材料,玻璃和无机织物是最常用的支持[14]。电纺聚合物纳米纤维已成为有前途的Alter天然,可作为一种多功能,稳定且潜在的活跃平台,用于在异质催化中应用。纳米纤维(NFS)显示出独特的功能特性,例如亚微米直径,较大的特定表面积和高纵横比。这些材料可以作为宏观多孔非织造结构获得,其特征是柔韧性和弹性。重要的是,这种类型的聚合物基质具有可添加的毛孔和化学功能,可以在稳定和增强半导体和金属纳米颗粒的光效率方面发挥关键作用。杂种材料,并在从水中轻驱动有机污染物的轻度驱动去除中可能采用了潜在的应用。迄今为止进行的大多数研究都被认为是被剥削的合成聚合物,并且在少数情况下,天然聚合物,生物聚合物或可生物降解的聚合物才被考虑[15]。PAN和PVDF电纺纤维近年来主要是由于其出色的热,机械稳定性和较高的化学耐药性[16-23]。也报道了其他聚合物(例如PMMA,PCL和CAB)的使用[24,25]。壳聚糖(CS)是最有希望的天然聚合物之一。Karagoz等。 进行了对PCL/TIO 2 NFS进行光催化的研究。Karagoz等。进行了对PCL/TIO 2 NFS进行光催化的研究。壳聚糖是源自几丁质的天然聚糖,具有许多极性和电离基团,因此对水具有高亲和力[26,27]。然而,CS通过电纺丝固有的处理性固有较差,因此有必要将其与合成聚合物融合以获得电纺纳米纤维组件[28,29]。在这方面,具有出色属性的理想候选者,例如生物相容性,生物降解性,非毒性和良好的机械性能,是poly(caprolactone)(caprolactone)(PCL)。特别是,该脂肪族聚酯可用于形成表现出高可溶性和兼容性的聚合物混合物,并提高其加工性[26,30]。有关于在不同应用中使用含有TIO 2纳米颗粒的PCL纳米纤维的报告。他们的研究重点是测试紫外线照射下甲基蓝和布洛芬的降解,达到约60%的降解率。此外,作者报告说,将AG引入NFS增强了降解和赋予抗菌特性[31]。Peng等。 产生的多孔纤维由PCL /TIO 2 /retoteRite组成,显示出有机染料的出色降解特性。 分散良好Peng等。产生的多孔纤维由PCL /TIO 2 /retoteRite组成,显示出有机染料的出色降解特性。分散良好