抽象的背景药理学自噬增强构成了预防或治疗大多数主要年龄相关疾病的临床上验证的策略。在此考虑的驱动下,我们在机器人化的荧光显微镜平台上对65,000种不同化合物进行了高含量/高吞吐量屏幕,以识别新型的自噬诱导剂。结果,我们报告了picropodophophlilin(PPP)作为自噬通量的有效诱导剂的发现,该诱导剂是在靶向上的作用,是胰岛素样生长因子-1受体(IGF1R)的酪氨酸激酶活性的抑制剂。因此,PPP失去了其在缺乏IGF1R或表达组成性活跃的Akt丝氨酸/苏氨酸激酶1(AKT1)突变体的细胞中的自噬刺激活性。使用对癌症的小鼠施用,PPP通过免疫原性细胞毒剂和程序性细胞死亡1(PDCD1(PDCD1,pd-1)的结合,提高了化学免疫疗法的治疗功效。当肿瘤对PPP不敏感或自噬不足时,这些PPP效应就会丧失。与化学疗法结合使用,PPP通过细胞毒性T淋巴细胞增强了肿瘤的浸润,同时还原了调节性T细胞。在人类三阴性乳腺癌患者中,IGF1R的激活磷酸化与抑制自噬相关,局部免疫力不利,预后不良。总结结论,这些结果表明,IGF1R可能构成一个新型且可吸毒的治疗靶标,用于与化学疗法结合进行癌症治疗。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
最初发表于:Alphandéry, Edouard (2020)。用于治疗应用的氧化铁纳米粒子。《今日药物发现》,25(1):141-149。DOI:https://doi.org/10.1016/j.drudis.2019.09.020
城市固体废物 (MSW) 填埋场代表着尚未充分探索的微生物生态系统。填埋场中含有不同数量的抗生素和建筑和拆除 (C&D) 废物,这些废物有可能因杀生物剂或氧化还原活性成分而改变微生物代谢,而这些影响在很大程度上尚未得到充分探索。为了规避 MSW 异质性的挑战,我们对模拟的 MSW 微观世界进行了一项 65 天的时间序列研究,以评估微生物组的变化,使用 16S rRNA 测序来响应 1) Fe(OH) 3 和 2) Na 2 SO 4 来代表 C&D 废物的氧化还原活性成分以及 3) 抗生素。Fe(OH) 3 的添加改变了整体群落组成,增加了 Shannon 多样性和 Chao1 丰富度。添加七种抗生素的混合物(每种 1000 ng/L)会改变群落组成,而不会影响多样性指标。添加硫酸盐对微生物群落组成或多样性影响不大。这些结果表明,新鲜 MSW 中的微生物群落组成可能会受到铁废物涌入和单一抗生素应用的显著影响。
氧化铁纳米颗粒是非常有用的材料,因为它们具有珍贵和潜在的应用,丰度,较低的加工成本,稳定性,环境友好的功能和生物相容性[1]。近年来,α-FE 2 O 3已广泛应用于催化剂,气体传感器,色素,光学和电磁,药物递送等,因为它们的增强特性归因于其各种结构[2]。氧化铁纳米颗粒已经通过各种方法合成,但是开发易于环保和环保的合成方法至关重要[3]。赤铁矿(α-FE 2 O 3)的带隙为1.9-2.2 eV,可以充当非常好的半导体催化剂[4]。在合成过程中,材料的带隙的变化可能有助于进一步改善其生物医学应用和光学特性[5]。纳米化材料的最新发展显示出多种用途,例如可充电电池,超级电容器,磁性材料,照片催化降解和电极材料[6]。铁的氧化物以三种常见形式出现,即赤铁矿,磁铁矿和磁铁矿,其中赤铁矿(α-fe 2 O 3)是
由于无线电信设备的指数增长,对有效的电磁干扰(EMI)屏蔽材料的需求很大。这些设备发出的电磁辐射会破坏电子设备并引起健康危害。因此,开发可以保护设备和人类免于电磁辐射的材料至关重要。在这种情况下,纳米复合材料具有巨大的优势,这是因为可以调整界面以及在纳米复合材料中使用磁性和介电成分的互补特性来增强EMI屏蔽性能。这项工作表明,通过仔细调整合成参数,我们可以生长氧化双相锂(Ferri磁性α -Life 5 O 8和顺磁性α -LifeO 2)纳米复合材料,具有不同的两个阶段相对级分。相位分数的变化和两个阶段的同时增长使我们能够控制两个相之间的接口以及纳米复合材料的物理特性,这对EMI屏蔽性能有直接影响。详细的结构(X射线衍射),成分(拉曼规格Troscopicy)和形态学(高分辨率透射电子显微镜)表征得出了,以了解合成条件对EMI屏蔽参数的影响。改进的介电和磁性性能以及样品中的界面数量增加,几乎相等的两个阶段导致最佳性能。这项工作证明了使用具有可控界面和物理性能的EMI屏蔽的双相磁氧化物纳米复合材料的重要潜力,EMI屏蔽层将来可以构成更复杂的三式系统的基础。
超顺磁性氧化铁纳米粒子 (SPION) 是纳米医学领域一项有希望的进展,在诊断和治疗应用中都表现出巨大的潜力。它们可以在磁场中磁化,并且不会显示永久磁化,从而可以在体内精确定位。在交变磁场下,SPION 会产生热量,可用于抗癌磁热疗或触发药物释放。在诊断方面,它们被广泛用作磁共振成像 (MRI) 的造影剂,而磁粒子成像 (MPI) 是一种使用 SPION 作为示踪剂的新兴临床前诊断技术。尽管有这些有希望的应用,但 SPION 的临床实用性受到与可扩展和可重复制造相关的挑战的阻碍。还需要集中精力提高 MPI 分辨率。此外,磁热疗在治疗炎症和感染性疾病中的应用仍然相对未被充分探索。因此,本论文的主要目标是通过可扩展的制造技术开发专门用于炎症和感染性疾病成像和治疗的 SPION。研究的第一部分涉及系统回顾,以检查有关使用 SPION 诊断和治疗慢性炎症疾病的最相关研究。MRI 被确定为 SPION 的主要应用。然而,对 MPI 和磁热疗分别用于成像和治疗炎症疾病的探索有限。在第二个项目中,使用基于风险的药品质量设计方法来优化用于磁热疗的 SPION。在第三个项目中,系统地研究了纳米粒子特性对 MPI 性能的影响。此外,这些项目建立了火焰喷雾热解作为一种可扩展和可重复的技术,用于合成具有复杂化学计量的纳米粒子用于磁热疗和 MPI。在研究的最后部分,通过可扩展技术将 SPION 整合到复合材料中,以改善炎症和传染病的治疗。SPION 与抗炎药塞来昔布一起被整合到片剂中。通过磁热诱导原位非晶化,药物溶解度显著提高。SPION 也被整合到微纤维中,磁性微纤维的散热作用与强力霉素一起用于对抗耐甲氧西林金黄色葡萄球菌。与单独使用药物相比,这显著减少了细菌生长。本论文介绍了 SPION 特性及其功能性能的系统探索,建立了一种可扩展的合成技术,并开发了新系统,使 SPION 更广泛地适应生物医学应用。
超顺磁性铁氧化铁纳米颗粒(SPION)是纳米医学中有希望的进步,在诊断和治疗应用中都表现出巨大的潜力。它们可以在磁场中磁化,并且不会显示永久性磁化,从而可以在体内精确定位。在交替的磁场下,SPION会产生热量,可用于针对癌症的磁性高温治疗或触发药物释放。诊断,它们被广泛用作磁共振成像(MRI)的对比剂,而磁性粒子成像(MPI)是一种使用SPIONS作为示踪剂的新兴临床前诊断技术。尽管有这些有希望的应用,但SPION的临床实用性受到与可扩展和可再现制造有关的挑战的阻碍。还需要集中精力来改善MPI解决方案。此外,磁性高温用于治疗炎症和感染性疾病的应用仍然相对不受影响。因此,本论文的主要目的是开发针对通过可扩展的制造技术进行成像和治疗炎症和感染性疾病的SPION。研究的第一部分涉及系统综述,以检查有关使用SPION用于诊断和治疗慢性炎症性疾病的最相关研究。MRI被确定为SPION的主要应用。然而,分别对MPI和磁性高温进行成像和治疗炎症性疾病的探索有限。spions与抗炎药Celecoxib一起掺入片剂中。在第二个项目中,使用设计方法基于风险的药物质量来优化磁性高温的SPION。在第三个项目中系统地研究了纳米颗粒性质对MPI性能的影响。此外,这些项目还将火焰喷射热解作为一种可扩展且可重复的技术,用于将纳米颗粒合成具有复杂化学计量的纳米颗粒,用于磁性高温和MPI。在研究的最后一部分中,通过可扩展技术将SPION纳入复合材料,以改善炎症和传染病的治疗。药物溶解度通过磁性高温诱导的原位非晶化显着提高。也将SPION纳入超细纤维中,并将磁性超纤维的热量耗散与强力霉素对抗耐甲氧西林的金黄色葡萄球菌。与单独使用该药物相比,这导致细菌生长大幅降低。本论文引入了对SPION特性及其功能性能的系统探索,为其生产建立了可扩展的合成技术,并开发了新型系统,以更广泛地适应生物医学应用中的SPION。
一所化学与化学工程学院,武汉纺织大学,江克萨斯阳光大道1号,武汉430200,中国B河北纤维纤维和生态型纤维及生态型和生态实验室,武汉大学,武汉大学,乌汉尼大学1号,韦恩·阿维(Wuhan Aveny),韦恩(Jiangxia Dong Chuan Road No. 800, Shanghai 200240, China d School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore e Singapore-HUJ Alliance for Research and Enterprise, NEW-CREATE Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 138602 Singapore f Energy Research Institute@NTU, ERI@N, Interdisciplinary Graduate School, Nanyang Technological大学,639798新加坡一所化学与化学工程学院,武汉纺织大学,江克萨斯阳光大道1号,武汉430200,中国B河北纤维纤维和生态型纤维及生态型和生态实验室,武汉大学,武汉大学,乌汉尼大学1号,韦恩·阿维(Wuhan Aveny),韦恩(Jiangxia Dong Chuan Road No.800, Shanghai 200240, China d School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore e Singapore-HUJ Alliance for Research and Enterprise, NEW-CREATE Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 138602 Singapore f Energy Research Institute@NTU, ERI@N, Interdisciplinary Graduate School, Nanyang Technological大学,639798新加坡